
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 





 
 
 
 

 
 
 
 
 

AADHAAR TECHNOLOGY & 

ARCHITECTURE 
Principles, Design, Best Practices, & Key Lessons 

 
 
 
 
 
 
 

MARCH 2014 
 
 
 
 
 
 
 

 
 
 
 

UNIQUE IDENTIFICATION AUTHORITY OF INDIA 
PLANNING COMMISSION, GOVERNMENT OF INDIA 

JEEVAN BHARATI BUILDING, CONNAUGHT CIRCUS, NEW DELHI – 110001 
 
 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 5 

Message from Chairman 

UIDAI has the vision of empowering every resident of 

India with a unique identity and providing a digital 

platform to authenticate anytime anywhere. The 

Aadhaar system is built on a sound strategy and a 

strong technology backbone and has evolved into a 

vital digital infrastructure. Meticulous planning and 

execution enabled the program to be launched ahead 

of plan in Sept 2010 and reach the kind of scale that 

was never achieved in any biometric identity system 

in the world. 

 

UIDAI created an ecosystem of partners for the 

various key components of the project and integrated them all onto a common 

technology backbone using open standards. Aadhaar technology system was able 

to succeed due to its core principles – openness, vendor-neutrality, security, and 

data analytics. In the absence of digital privacy laws, UIDAI took it upon itself to 

implement rigorous standards and measures to ensure data privacy and security. 

Apart from generating 60 crore (600million) Aadhaars in 4 years through this 

approach, the Aadhaar platform is now integrated into the financial systems of 

NPCI and banks, taking India towards the goal of total financial inclusion. 

 

Documenting of the design and implementation of the Aadhaar technology, which 

evolved over a period of four years, was as onerous as building the system itself. 

The UIDAI Technology Centre has done a commendable job in compiling white 

papers on technology strategy, application features, and architecture. These 

documents place the Aadhaar system on a firm foundation and also serve as the 

beacons for many e-Governance projects in India and across the world. 

 
My hearty congratulations to the UIDAI technology team! 
 

Nandan Nilekani 
Chairman, UIDAI 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 7 

Message from Director General 

Aadhaar project, under the Planning Commission, 

Government of India, is an initiative to provide a unique 

identification number to every resident that can be 

leveraged by the residents to access various services 

and benefits. Uniqueness of Aadhaar identity allows 

elimination of fake and duplicate accounts, and online 

authentication provides a mechanism for paperless, 

electronic and instantaneous verification of identity, 

anytime anywhere. Aadhaar platform can be utilized by 

various Governmental, public, and private sector 

agencies to efficiently deliver services to residents. 

 

By its very nature, the Aadhaar system needed a strong technology foundation. 

Appropriately, the Technology Centre was the first unit of UIDAI to start 

functioning in 2009 in Bangalore. UIDAI technology team was able to develop the 

required applications and successfully generate the first Aadhaar number within a 

year of its formation. The architecture was rigorously tested and validated through 

a series of ‘Proof of Concept’ studies. Aadhaar generation was commenced in 

August 2010 and the first Aadhaar letter was formally handed over to a resident at 

Nandurbar in Maharashtra on 29 September 2010. Subsequently Authentication 

and e-KYC services were also launched.   

 

In the course of attaining the milestone of 60 crore (600 million), the Aadhaar 

technology backend has become the largest biometric identity repository in the 

world and the first to provide an online, anytime anywhere, multi-factor 

authentication service. A strong technology foundation based on open architecture 

enabled the rapid evolution of the Aadhaar system. It was important to document 

all aspects of Aadhaar technology and make it available in public domain. The three 

white papers published by the UIDAI Technology Centre fulfil this need. 

 

I sincerely appreciate the efforts of our technology team in publishing these. 

 

Vijay Madan 

Director General, UIDAI 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 9 

From the Editor’s Desk 

‘Aadhaar’ is undoubtedly one of the most important Projects rolled out by 

Government of India. Ambitious, one-of-a-kind and a game-changer, ‘Aadhaar’ is on 

the path of delivery to every Indian resident, a ‘national identity’ and triggering 

thereby the much desired governance system based on social inclusion, 

transparency & accountability. 

 

Considering India’s population of 121 crores, it is obviously a highly ambitious 

project.  Any Project of this magnitude prospers and grows based on the 

contributions from the people associated with it.  Unique Identification Authority 

of India (UIDAI) has been blessed in this regard.  Many outstanding people from 

both Private and Government  sectors, spanning the domains of - Administration, 

Biometrics, Project Management, Law, Technology and Finance, to name a few - 

have come together and dedicated their talent, time and knowledge, besides the 

much needed passion & commitment. 

 

UIDAI has also been led by competent people like Shri Nandan Nilekani, as its 

Chairman, Shri Ram Sewak Sharma, as its first Director General and Dr Vijay 

Madan, who succeeded him a year back. Shri Nilekani has provided both visionary 

and charismatic leadership to the Organisation as its Founding Chairman.  With his 

experience of building one of India’s internationally recognised I.T. Companies; 

besides his association with both State & Union Governments  in different advisory 

capacities, he was an appropriate choice to establish and lead an organisation like 

UIDAI that called for an understanding of technology and a commitment to social 

inclusion.  The yeoman services rendered by the first Director General, Shri R.S 

Sharma are recalled with fondness.  A man of boundless energy and dedication, 

Shri Sharma with his attention to detail and sharp technical knowledge, ensured 

that the Project got the right kick-start and maintained momentum in its formative 

years.  Dr Madan has been the perfect foil to the Chairman besides being an able 

successor as the current Director General.  He has been able to expand the horizon 

of the Organisation by steering it to the next growth trajectory for quicker delivery 

of Aadhaar and its deployment for people-centric Applications.  His focus also has 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 10 

been on knitting together different components into a single and synergetic unit 

for this purpose. 

 

UIDAI has always believed in documentation and sharing of information with 

public. Technology & processes that characterise UIDAI needed to be brought 

within the public domain as a matter of transparency,  as also to elicit debate and 

discourse. Towards this end, the White Papers have been in the making for a while.  

I acknowledge the contributions of Shri Srikanth Nadhamuni, Dr Pramod Varma, 

Shri Sanjay Jain and Dr Vivek Raghavan in writing the papers.  Our ADGs at the 

Tech Centre too have been actively involved in writing and reviewing them. The 

contributions of Shri Rajendra Kumar, Shri Sudhir Narayana, Shri Venkat Rao and 

Shri Anup Kumar are appreciated in particular.  

 

The writers and reviewers have not lost sight of the need for a simple & straight 

language while putting together the highly technical and procedurally rigorous 

content of the Project. They have done a commendable job.  Further, these 

documents are a manifestation of an intensely cerebral and immensely taxing 

effort put in by a band of dedicated domain experts who worked with the UIDAI’s 

Tech Centre at different stages of its evolution.  There are many, but some who 

definitely need a mention are Srikanth Nadhamuni, Raj Mashruwala, Pramod 

Varma, Sanjay Jain, Vivek Raghavan, and Jagdish Babu.  Our colleagues including 

Dy. Directors General, Asst. Directors General and others serving UIDAI’s cause at 

the Headquarters, Regional Offices and Technology Centre have contributed in 

multiple ways to the evolution of technology, processes & procedures and the 

compilation of this document.  I beg pardon for not mentioning them by name.  All 

of them are gratefully acknowledged. 

 

It is a matter of pride and pleasure that these are getting published as the UIDAI 

reaches the hallmark of 60 crore Aadhaars well ahead of the targeted date and 

gears up to provide identification to the other half of the nation. 
 
 

Ashok Dalwai 
  Deputy Director General, UIDAI 

Technology Centre, Bengaluru 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 11 

Table of Contents 

 

MESSAGE FROM CHAIRMAN .......................................................................................................................................... 5 

MESSAGE FROM DIRECTOR GENERAL .......................................................................................................................... 7 

FROM THE EDITOR’S DESK ........................................................................................................................................... 9 

TABLE OF CONTENTS ................................................................................................................................................. 11 

TABLE OF ABBREVIATIONS ....................................................................................................................................... 15 

TABLE OF FIGURES..................................................................................................................................................... 17 

EXECUTIVE SUMMARY ............................................................................................................................................... 19 

1 INTRODUCTION TO AADHAAR ........................................................................................................................ 23 

1.1 AADHAAR STRATEGY ............................................................................................................................................ 24 

1.2 AADHAAR VALUE PROPOSITION .......................................................................................................................... 27 

1.2.1 AADHAAR IN SERVICE DELIVERY ........................................................................................................................................... 28 

1.2.2 AADHAAR USAGE TYPES ........................................................................................................................................................ 28 

1.3 AADHAAR DESIGN CONSIDERATIONS ................................................................................................................. 30 

1.3.1 MINIMALISTIC APPROACH TO DATA .................................................................................................................................... 31 

1.3.2 FEDERATED MODEL & ONE WAY LINKAGE........................................................................................................................ 31 

1.3.3 DESIGNING FOR INCLUSION .................................................................................................................................................... 32 

1.3.4 PRIVACY BY DESIGN ................................................................................................................................................................ 33 

1.3.5 ECOSYSTEM APPROACH .......................................................................................................................................................... 35 

1.3.6 IDENTITY AS A PLATFORM...................................................................................................................................................... 37 

2 AADHAAR APPLICATION ................................................................................................................................. 39 

2.1 AADHAAR APPLICATION OVERVIEW .................................................................................................................. 39 

2.2 USE OF BIOMETRICS IN AADHAAR ...................................................................................................................... 40 

2.2.1 MULTI-ABIS DE-DUPLICATION SYSTEM ............................................................................................................................ 41 

2.2.2 BIOMETRICS IN AUTHENTICATION........................................................................................................................................ 42 

2.3 ENROLMENT MODULE .......................................................................................................................................... 43 

2.3.1 ENROLMENT CLIENT ............................................................................................................................................................... 44 

2.3.2 ENROLMENT SERVER .............................................................................................................................................................. 48 

2.4 AUTHENTICATION MODULE ................................................................................................................................. 56 

2.4.2 AUTHENTICATION APIS ......................................................................................................................................................... 59 

2.4.3 AUTHENTICATION SERVER..................................................................................................................................................... 61 

2.5 E-KYC MODULE .................................................................................................................................................... 62 

2.5.1 COMPLIANCE WITH THE IT ACT, 2000 ............................................................................................................................... 64 

2.5.2 E-KYC API .............................................................................................................................................................................. 65 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 12 

2.5.3 E-KYC SERVER ........................................................................................................................................................................ 66 

2.6 COMMON MODULES .............................................................................................................................................. 66 

2.6.1 TECHNOLOGY PLATFORM ....................................................................................................................................................... 67 

2.6.2 INTERNAL APIS ....................................................................................................................................................................... 67 

2.6.3 BUSINESS INTELLIGENCE & REPORTING ............................................................................................................................. 67 

2.6.4 APPLICATION AND INFORMATION PORTALS ....................................................................................................................... 68 

2.6.5 APPLICATION MONITORING ................................................................................................................................................... 69 

2.6.6 FRAUD DETECTION ................................................................................................................................................................. 69 

3 ARCHITECTURE PRINCIPLES ........................................................................................................................... 71 

3.1 ARCHITECTURE EVOLUTION & TRENDS ............................................................................................................ 71 

3.1.1 SCALE-UP, SCALE-OUT, AND OPEN SCALE-OUT .................................................................................................................. 72 

3.1.2 COMMODITY COMPUTING ....................................................................................................................................................... 75 

3.1.3 DISTRIBUTED PLATFORMS & DATA STORES ...................................................................................................................... 75 

3.1.4 UBIQUITOUS CONNECTIVITY .................................................................................................................................................. 76 

3.1.5 MOBILE, TABLET, AND HANDHELDS .................................................................................................................................... 76 

3.1.6 IMPACT OF TECHNOLOGY TRENDS IN AADHAAR ................................................................................................................ 77 

3.2 AADHAAR ARCHITECTURE PRINCIPLES ............................................................................................................. 78 

3.2.1 KEY ASSUMPTIONS .................................................................................................................................................................. 78 

3.2.2 OPENNESS AND VENDOR NEUTRALITY ................................................................................................................................. 79 

3.2.3 SECURITY AND PRIVACY ......................................................................................................................................................... 82 

3.2.4 SCALABILITY ............................................................................................................................................................................. 83 

3.2.5 INTEROPERABILITY ................................................................................................................................................................. 85 

3.2.6 MANAGEABILITY ...................................................................................................................................................................... 86 

3.2.7 DATA DRIVEN DECISION MAKING ........................................................................................................................................ 87 

3.2.8 PLATFORM BASED APPROACH .............................................................................................................................................. 87 

4 APPLICATION ARCHITECTURE ........................................................................................................................ 89 

4.1 OVERALL ARCHITECTURE..................................................................................................................................... 89 

4.2 ENROLMENT MODULE .......................................................................................................................................... 90 

4.2.1 ENROLMENT CLIENT ............................................................................................................................................................... 90 

4.2.2 ENROLMENT SERVER ........................................................................................................................................................... 101 

4.2.3 ENROLMENT BIOMETRIC SUBSYSTEM ............................................................................................................................... 109 

4.2.4 AADHAAR NUMBER GENERATION AND ALLOCATION ..................................................................................................... 111 

4.2.5 ENROLMENT PACKET ARCHIVAL ....................................................................................................................................... 112 

4.2.6 PRINT & PARTNER INTEGRATION ..................................................................................................................................... 114 

4.2.7 AADHAAR UPDATE SERVICES ............................................................................................................................................. 115 

4.2.8 INFORMATION PRIVACY & SECURITY ................................................................................................................................ 117 

4.2.9 DATA MODEL AND TECHNOLOGY STACK.......................................................................................................................... 119 

4.3 AUTHENTICATION MODULE .............................................................................................................................. 122 

4.3.1 AUTHENTICATION API ........................................................................................................................................................ 125 

4.3.2 BIOMETRIC AUTHENTICATION ........................................................................................................................................... 126 

4.3.3 ONE-TIME-PIN (OTP) AUTHENTICATION ...................................................................................................................... 130 

4.3.4 AUTHENTICATION SERVER.................................................................................................................................................. 131 

4.3.5 INFORMATION PRIVACY & SECURITY ................................................................................................................................ 137 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 13 

4.3.6 DATA MODEL AND TECHNOLOGY STACK.......................................................................................................................... 143 

4.4 E-KYC MODULE ................................................................................................................................................. 145 

4.4.1 E-KYC API ........................................................................................................................................................................... 145 

4.4.2 INFORMATION PRIVACY & SECURITY ................................................................................................................................ 146 

4.4.3 E-KYC SERVER ..................................................................................................................................................................... 146 

4.5 PLATFORM & COMMON MODULES .................................................................................................................. 147 

4.5.1 TECHNOLOGY PLATFORM .................................................................................................................................................... 147 

4.5.2 BUSINESS INTELLIGENCE & REPORTING .......................................................................................................................... 159 

4.5.3 SYSTEM & APPLICATION MONITORING (NOC) ............................................................................................................... 160 

5 KEY LESSONS AND CONCLUSION .................................................................................................................. 162 

5.1 KEY LESSONS ....................................................................................................................................................... 163 

REFERENCES ............................................................................................................................................................ 167 

 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 15 

Table of Abbreviations 

ABIS Automated Biometric Identification System 

API Application Programming Interface 

ASA Authentication Service Agency 

AUA Authentication User Agency 

BFD Best Finger Detection 

BI Business Intelligence 

BPL Below Poverty Line 

BSP Biometric Service Provider 

CIDR Central Identity Data Repository 

DDSVP Demographic Data Standards & Verification Process 

DoB Date of Birth 

EA Enrolment Agency 

ICDS Integrated Child Development Services Scheme 

JSY Janani Suraksha Yojana 

KYC Know Your Customer 

MNREGS Mahatma Gandhi National Rural Employment Guarantee Scheme 

OTP One Time Pin 

PDS Public Distribution System 

PID Personal Identity Data 

PII Personal Identity Information (Personally Identifiable Information) 

PoA Proof of Address 

PoI Proof of Identity 

RSBY Rashtriya Swasthya Bima Yojna 

SSA Sarva Shiksha Abhiyan 

UIDAI Unique Identification Authority of India 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 17 

Table of Figures 

FIGURE 1: UIDAI PARTNER ECOSYSTEM .............................................................................................................. 37 

FIGURE 2: AADHAAR APPLICATION OVERVIEW ...................................................................................................... 39 

FIGURE 3: ENROLMENT MODULE OVERVIEW ........................................................................................................ 43 

FIGURE 4: AADHAAR AUTHENTICATION OVERVIEW ................................................................................................ 56 

FIGURE 5: ARCHITECTURE EVOLUTION ................................................................................................................. 72 

FIGURE 6: ENROLMENT CLIENT COMPONENT DIAGRAM.......................................................................................... 91 

FIGURE 7: ENROLMENT CLIENT SCREENSHOT ........................................................................................................ 99 

FIGURE 8: LOCAL LANGUAGE KEYBOARD ............................................................................................................ 100 

FIGURE 9: BIOMETRIC CAPTURE SCREENSHOT ..................................................................................................... 100 

FIGURE 10: ENROLMENT SERVER LOGICAL VIEW ................................................................................................. 105 

FIGURE 11: MULTI-ABIS DE-DUPLICATION ....................................................................................................... 110 

FIGURE 12: ENROLMENT PACKET ARCHIVAL ARCHITECTURE .................................................................................. 114 

FIGURE 13: ENROLMENT DATA MODEL ............................................................................................................. 120 

FIGURE 14: TECHNOLOGY STACK OF ENROLMENT SERVER ..................................................................................... 121 

FIGURE 15: AUTHENTICATION NETWORK ARCHITECTURE ...................................................................................... 124 

FIGURE 16: AUTHENTICATION RESIDENT DATA LOAD ........................................................................................... 132 

FIGURE 17: AUTHENTICATION NETWORK SECURITY LAYERS ................................................................................... 140 

FIGURE 18: AUTHENTICATION DATA MODEL ...................................................................................................... 143 

FIGURE 19: AADHAAR E-KYC FLOW ................................................................................................................. 145 

FIGURE 20: APPLICATION STACK & FRAMEWORKS ............................................................................................... 148 

FIGURE 21: A TYPICAL SEDA FLOW ................................................................................................................. 157 

FIGURE 22: BI TECHNOLOGY PLATFORM ............................................................................................................ 160 

FIGURE 23: APPLICATION MONITORING IN NOC ................................................................................................. 161 

 

 

file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018896
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018898
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018899
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018901
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018902
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018903
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018904
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018905
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018906
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018907
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018908
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018909
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018911
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018912
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018913
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018914
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018915
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018916
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018917
file:///C:/Users/pramod.varma/Desktop/wp/final/AadhaarTechnologyArchitecture_mar2014.docx%23_Toc383018918




AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 19 

Executive Summary 

TThe Unique Identification Authority of India (UIDAI) was established in 

January 2009, as an attached office to the Planning Commission. The purpose of 

the UIDAI is to issue a Unique Identification number (Aadhaar number) to every 

Indian resident that is (a) robust enough to eliminate duplicate and fake identities, 

and (b) can be verified and authenticated in an easy, electronic, cost-effective way. 

The UIDAI's approach will keep in mind the learning from the government's 

previous efforts at issuing identity. 

 

Aadhaar system is built purely as an “Identity Platform” that other applications, 

Government and private, can take advantage of. A sound strategy [1] and a strong 

technology backbone enabled the program to be launched ahead of plan in 

September 2010 and reach the kind of scale that was never achieved in any 

biometric identity systems across the world. Within 4 years since launch, Aadhaar 

system has grown in capability and more than 600 million Aadhaar numbers have 

been issued so far using the system [2]. 

 

Entire technology architecture behind Aadhaar is based on principles of openness, 

linear scalability, strong security, and most importantly vendor neutrality. Aadhaar 

technology backbone is built using the following principles: 

 Open architecture – Building Aadhaar system with true openness meant 

use of open standards to ensure interoperability; platform approach with 

open APIs to allow the ecosystem to build on top of Aadhaar APIs; vendor 

neutrality across the application components using open and standard 

interfaces; and identity system designed to work with any device, any form 

factor, and any network. 

 Design for scale – Aadhaar system is expected issue more than 1.2 billion 

identities and will continue to grow as the resident population expands. 

Since every new enrolment requires biometric de-duplication across the 

entire system, every component needs to scale to very large volumes. This 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 20 

meant that system must handle hundreds of millions of transactions across 

billions of records doing hundreds of trillions of biometric matches every 

day! In addition all online services such as Aadhaar authentication, e-KYC 

service, and update service must work with high availability and sub-

second performance. Network and data centre load balancing and multi-

location distributed architecture for horizontal scale are critical to such 

massive scalability. 

 Data Security – Security and privacy of data within Aadhaar system has 

been foundational. UIDAI has taken several measures to ensure security of 

resident data from the time it is captured all the way to how it is stored 

within CIDR. Usage of 2048-bit PKI encryption and tamper detection using 

HMAC ensures no one can decrypt and misuse the data, even if they are in 

possession of enrolment packet. Resident data and raw biometrics is always 

kept encrypted even within UIDAI data centres. In addition, entire Business 

Intelligence (BI) sub-system anonymizes all PII to ensure resident personal 

data is protected across all system components. 

 

All application components are built using open source components and open 

standards. Aadhaar software currently runs across two of the data centres within 

India managed by UIDAI and handles 1 million enrolments a day and at the peak 

doing about 600 trillion biometric matches a day. Current system already has 

about 4 PB (4000 Terabytes) of raw data and continues grow as new enrolments 

come in. Aadhaar Authentication service is built to handle 100 million 

authentications a day across both the data centres in an active-active fashion and is 

benchmarked to provide sub-second response time. Central to Aadhaar system is 

its biometric sub-system that performs de-duplication and authentication in an 

accurate way [3] [4]. 

 

This document is meant to provide architectural patterns, design philosophy, and 

specific lessons from Aadhaar project for software architects building large scale 

systems, especially for those in various e-Governance projects. By sharing the 

learning and architecture details, Aadhaar team hopes to help software architects 

in making the right decision and apply similar architectural patterns within their 

application. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 21 

This is a technical document and is targeted at software architects building open, 

scalable systems especially in the area of e-Governance. Readers are encouraged to 

read the following documents to get a complete understanding of Aadhaar system. 

1. UIDAI Strategy Paper [1] 

2. Aadhaar Technology Strategy [5] 

3. Aadhaar Product Document [6] 

 

 

 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 23 

1 Introduction to Aadhaar 

IIn India, inability to prove identity is one of the biggest barriers preventing the 

poor from accessing benefits and subsidies. Public as well as private sector 

agencies across the country require proof of identity before providing individuals 

with services. But till date, there remains no nationally accepted, verifiable identity 

number covering all population that both residents and agencies can use with ease 

and confidence. 

 

As a result, every time individuals try to access a benefit or service, they must 

undergo a full cycle of identity verification. Different service providers also have 

different requirements in the documents they demand, the forms that require 

filling out, and the information they collect on the individual. Such duplication of 

efforts due to ‘identity silos’ increase overall cost of identity verification and cause 

inconvenience. This is especially hard for India’s poor and underprivileged 

residents, who usually lack documentation and find it difficult to avail various 

services and benefits. 

 

There are clearly immense benefits from a mechanism that uniquely identifies a 

person and ensures instant identity verification. The need to prove one’s identity 

only once will bring down transaction costs. A clear identity number can transform 

the delivery of social welfare programs by making them more inclusive of those 

communities now cut off from such benefits due to their lack of identification. It 

also enables the government to shift from indirect to direct benefit delivery by 

directly reaching out to the intended beneficiaries. A single universal identity 

number is also useful in eliminating fraud and duplicate identities, since 

individuals can no longer be able to represent themselves differently to different 

agencies. This results in significant savings to the state exchequer.  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 24 

 

The Unique Identification Authority of India (UIDAI) was established in January 

2009, as an attached office to the Planning Commission. The purpose of the UIDAI 

is to issue a Unique Identification number (Aadhaar number) to every Indian 

resident that is (a) robust enough to eliminate duplicate and fake identities, and 

(b) can be verified and authenticated in an easy, electronic, cost-effective way. 

1.1 Aadhaar Strategy 

UIDAI only provides identity – The UIDAI's purview is limited to the issuance of 

unique identification (Aadhaar) numbers linked to a person's demographic and 

biometric information. The UID number (Aadhaar number) only guarantees 

identity, not rights, benefits or entitlements.  

 

Aadhaar number proves identity, not citizenship – As per UIDAI’s mandate [7], 

all legal residents (anyone legally residing in India) in the country can be issued 

Aadhaar number. Possession of Aadhaar number is merely a proof of identity and 

does not confer citizenship.  

 

A pro-poor approach – The UIDAI envisions full enrolment of residents, with a 

focus on enrolling India's poor and underprivileged communities. The Registrars 

(such as State Governments) that the UIDAI partners with helps bring large 

numbers of the poor and underprivileged into the Aadhaar system. Providing 

token-less (no cards or other physical tokens), online, anytime anywhere 

authentication improves service delivery to the poor.  

 

Enrolment of residents with proper verification – Existing identity databases in 

India are fraught with problems of fraud due to duplicate/ghost beneficiaries. To 

prevent this from seeping into the UIDAI database, the UIDAI enrols residents into 

its database with proper verification of their demographic information based on 

Shri. N. Vittal headed DDSVP committee recommendations [8]. This ensures that 

the data collected is clean from the start of the program. However, much of the 

poor and underserved population lack identity documents and Aadhaar may be the 

first form of identification they have access to. The introducer model proposed by 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 25 

the DDSVP committee allows UIDAI to ensure that the procedures do not become a 

barrier for enrolling the poor.  

 

A partnership model – UIDAI approach leverages the existing infrastructure of 

government and private agencies across India. The UIDAI is the regulatory 

authority managing a Central Identity Data Repository (CIDR), which will issue 

Aadhaar numbers, update resident information, and authenticate the identity of 

residents as required. UIDAI partners with agencies such as central and state 

departments who are the 'Registrars' for the UIDAI. Registrars conduct the 

enrolment camps using UIDAI software and procedures, upload the encrypted 

enrolment data to the CIDR to de-duplicate resident information, and help seed the 

Aadhaar number into their beneficiary databases.  

 

Enrolment is not mandated – Aadhaar strategy uses a demand-driven model, 

where the benefits and services that are linked to the Aadhaar number ensure 

demand for the number. This will not however, preclude governments or 

Registrars from mandating enrolment.  

 

UIDAI issues a number, not a card – The UIDAI's role is limited to issuing the 

number which is communicated to the resident through a letter. This number may 

be printed on the document/card that is issued by various usage agencies. 

 

Aadhaar number does not contain any intelligence – Embedding personal data 

into identity numbers makes them susceptible to fraud and discrimination. 

Aadhaar number is a random number making it purely a national identity that can 

be used across the country. 

 

UIDAI only collects minimal information – Aadhaar enrolment only seeks the 

following demographic and biometric information:  

1. Name  

2. Date of birth (or Age) 

3. Gender  

4. Address  

5. Mobile Number and Email (optional) 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 26 

6. Ten fingerprints, two iris scans, and photograph 

7. For children under five years old, Aadhaar number and name of the 

guardian (Father/Mother/Guardian) 

 

Process to ensure no duplicates – Registrars send the applicant's encrypted data 

packet to the UIDAI data centres for de-duplication. Aadhaar enrolment system 

performs a search on key demographic fields and on the biometrics for each new 

enrolment, to ensure uniqueness.  

 

Process to keep data up to date – Incentives in the Aadhaar system are aligned 

towards a self-cleaning mechanism. The existing patchwork of multiple databases 

in India gives individuals the incentive to provide different personal information to 

different agencies. Since de-duplication in the Aadhaar system ensures that 

residents have only one chance to be in the database, individuals are incentivized 

to provide accurate data. This incentive becomes especially powerful as benefits 

and entitlements are linked to the Aadhaar number. Regular usage of identity 

across many services naturally incentivizes the resident to keep Aadhaar system 

up to date. 

 

Online authentication – UIDAI offers a strong form of online authentication. 

When residents wanting to avail a service require identity/address verification, 

agencies can compare demographic and biometric information of the resident with 

the record stored in the central database.  

 

Explicit resident consented e-KYC – A balance between 'privacy and purpose' is 

critical to ensure convenience of online identity is balanced with the requirement 

to protect resident identity data. Aadhaar authentication only responds with a 'Yes' 

or 'No' response and no resident data is sent back. Aadhaar e-KYC service allows 

resident to authorize UIDAI to share electronic version of their Aadhaar letter. For 

every Aadhaar e-KYC request, only after successful resident authentication, 

demographic and photo data is shared in electronic format (via biometric/OTP 

authentication resident explicitly authorizes UIDAI to share electronic version of 

Aadhaar letter instead of sharing physical photocopies). Resident authorization is 

NOT used for multiple e-KYC transactions, instead, every time agencies require 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 27 

electronic version of Aadhaar letter data for KYC purposes, resident must 

authorize the agency. 

 

Technology undergirds the UIDAI system – Technology systems have a major 

role across the UIDAI infrastructure. Large scale biometric de-duplication, online 

authentication, data security, analytics, etc require well designed, secure, and 

scalable systems. 

1.2 Aadhaar Value proposition 

For residents – Aadhaar system provides a single source of identity verification 

across the country for its entire population. Once residents enrol, they can use the 

number multiple times using electronic means. This eliminates the hassle of 

repeatedly providing supporting identity documents each time a resident wishes 

to access services such as opening a bank account, obtaining driving license, etc. By 

providing a clear proof of identity, Aadhaar system also facilitates entry for poor 

and underprivileged residents into the formal banking system providing large 

scale financial inclusion and provides the opportunity to avail services offered by 

the government and the private sector. Aadhaar system enables mobility to 

millions of people who migrate from one part of the country to another. 

 

For Governments – The UIDAI provides Aadhaar to residents only after de-

duplicating their records against entire database. Eliminating duplication under 

various schemes is expected to save substantial money for the government 

exchequer. It also provides governments with accurate data on beneficiaries, 

enable direct benefit programs, and allow government departments to coordinate 

and optimize various schemes. 

 

For Service Agencies – Uniqueness characteristic of Aadhaar number helps 

agencies such as banks, telecom companies, insurance companies, etc clean out 

duplicates from their databases, enabling significant efficiencies and cost savings. 

For agencies focused on cost, Aadhaar online authentication and e-KYC services 

greatly help lower KYC costs. For agencies focused on social goals, a reliable 

identification number enables them to broaden their reach via easy identity 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 28 

verification. The strong authentication that the Aadhaar number offers can 

improve ease of delivering services in a convenient fashion, leading to better 

customer satisfaction.  

1.2.1 Aadhaar in service delivery 

The key goal of Aadhaar program is to provide an identity infrastructure for 

delivery of various social welfare programs and for effective targeting of these 

services. While enabling better government welfare delivery is the prime focus of 

Aadhaar, it can also be utilized by enterprises and service providers such as banks, 

telecom companies, and others for improving their service delivery. 

 

The potential of Aadhaar can be realized only upon use of the infrastructure as an 

ID proof and as a unique key by various state departments, central ministries, 

PSU’s, and private sector entities to provide service delivery to residents in an 

integrated fashion. There are many benefits associated with such integration for 

the various stakeholders that range from better compliance management to 

significant savings in leakages and increased efficiency and accountability in 

service delivery. 

1.2.2 Aadhaar Usage Types 

Aadhaar and identity authentication can be used by the service delivery provider 

mainly for the following 3 broad usage types. 

1.2.2.1 Establishing Proof of Presence 

1. Confirming Beneficiary – Various social sector programs, where 

beneficiaries need to be confirmed before delivery of the service, are 

expected to be the most common users of the authentication service. 

Examples of applications include subsidized food and kerosene delivery to 

PDS beneficiaries, health service delivery to RSBY beneficiaries, registering 

job applications by MNREGS beneficiaries, etc. 

2. Attendance and Muster Rolls – Another key usage of authentication is 

attendance tracking for programs such as SSA (for students and teachers), 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 29 

MNREGS where wages/outlay is linked to actual number of days the 

beneficiary reports for the program, etc. Similarly, pension system 

requiring yearly verification may use Aadhaar biometric authentication the 

doorstep of beneficiary using a handheld thus providing convenience to 

older residents. 

3. Financial Transactions – Examples include banks that authenticate a 

customer using Aadhaar as well as bank-related identity information 

(account number or user id along with password/OTP, etc.) before enabling 

banking transactions such as funds transfer, funds withdrawal, etc. Several 

banks and Department of Post have started offering these services using 

Aadhaar enabled Micro-ATMs in villages and remote locations. 

1.2.2.2 Establishing Know-Your-Customer (KYC) Credentials 

1. KYC for various services – Identity and address verification is a key 

requirement for enrolling a new customer or opening a new account for an 

individual. Examples are the issuance of a new PAN card, passport, 

telephone connection, bank account, or an Internet service account for an 

online business. The service provider in all such cases can verify applicant 

identity and address using Aadhaar authentication and e-KYC online 

services instead of asking for paper copies of identity and address 

documents. This secure, electronic, paperless KYC process is expected to 

substantially reduce the cost of KYC and provide convenience to customers. 

2. General Proof of Identity (PoI) – General use of identity document is 

commonplace in many areas such as entry to airports, hotels, train travel, 

offices, education institutions, etc. Various Internet, social networking and 

e-commerce related websites also use identity verification for offering their 

services. Online authentication and e-KYC services of Aadhaar may be used 

in many of these systems in an electronic, paperless mode to make entire 

process secure, convenient, and fast. 

3. Demographic Data verification – Customer demographic data in service 

delivery databases may also be verified using Aadhaar authentication to 

clean and unify customer master database. For example, a bank may allow 

customers to simply go on their website and provide new address which 

can be instantly verified against Aadhaar system thus avoiding customer 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 30 

having to provide paper proofs every time. Similarly, systems requiring age 

verification (e.g. senior citizen discounts) can easily take advantage of 

Aadhaar demographic authentication to allow senior residents to obtain 

discounts without having to provide paper proofs. 

1.2.2.3 As a Unifier for Resident-centric Information 

Aadhaar number may also be used as a common, unique identifier to clean up and 

link customer/beneficiary accounts. Applications of these can be: 

1. State view of residents across schemes e.g. number of schemes accessed by 

resident; potential linkage of JSY, ICDS, and SSA to track health and 

education for every child. 

2. Creation of national health care platform and portable patient records 

systems. 

3. Credit bureaus for customer rating information. 

4. National skills registry and enable individuals working in informal sectors 

(drivers, maids, electricians, plumbers, etc) to carry their experience as they 

move from one job to another and from one place to another. 

5. Large entities that need to implement single customer view across services 

provided such as banks, insurance companies. 

 

For details, refer to Aadhaar Enabled Service Delivery White Paper [9]. 

1.3 Aadhaar Design Considerations 

Aadhaar system captures demographic data along with biometrics from residents 

as part of enrolment process. This data is used to de-duplicate against existing 

database and if uniqueness is established, a new Aadhaar number is assigned to 

that enrolment application. There were several fundamental decisions that were 

taken when deciding the details of data elements within Aadhaar system. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 31 

1.3.1 Minimalistic Approach to Data 

Purpose of Aadhaar is only to provide a biometric attached identity that is 

verifiable online to a billion people. For success of such as large program, it was 

critical to keep the whole system simple and purpose driven. Since this touches 

everyone in the country once, it was possible to easily collect some more 

information regarding residents (such as marital status, place of birth, religion, 

caste, BPL status, etc).  

 

But, since UIDAI’s purpose was only to provide unique identity to an individual, 

DDSVP committee [8] took a firm decision to keep it minimal just enough to 

establish individual identity. Inclusion being one of the key goals of Aadhaar, it was 

critical that data be minimized to avoid elimination of people who may not be able 

to provide such details. Hence it was decided that Aadhaar system should capture 

only four key demographic elements (name, gender, date of birth, and address) 

with couple of additional optional attributes (mobile, email) in addition to 

biometrics data which is core to establishing uniqueness of an individual. 

1.3.2 Federated Model & One Way Linkage 

While the UIDAI has the largest repository of identity data, one must resist the 

temptation to add other resident attributes, especially links to other identities that 

resident may have, to this central system. For example, it was decided not to 

capture and link existing identities such as Passport number or Driver’s License 

number or Income Tax number (PAN), etc within Aadhaar. Those application 

systems may add Aadhaar number within their database and link it “one way” to 

Aadhaar rather than other way around. 

 

That means that Aadhaar system has no knowledge of any applications, 

transactions, or domain specific identities within its database. This is designed so 

that information about the resident (transaction history of a resident) is not 

centralized into one system and is kept in distributed fashion. This federated 

model makes collation and cross domain analysis of resident transactions difficult 

since it requires massive effort of bringing many federated databases together to 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 32 

derive knowledge of a resident. Any such transfer or collation of data across these 

distributed information silos should follow due course of law. 

 

Fundamentally, Aadhaar is designed as a “root” identity which is “unique” to an 

individual and is “valid for life” whereas all domain specific identities (Driver’s 

License number, Income Tax number, etc) all other identities may be thought of as 

“derived” identities which are issued for specific purposes. 

1.3.3 Designing for Inclusion 

One of the key goals of Aadhaar system is inclusion. When the system needs to 

scale to a billion people with diverse cultural, economic, and educational 

background, it is essential that the system be made simple from the perspective of 

data, processes, and its structure. While standardization of name, address, etc are 

absolutely essential to create a common, electronically verifiable, national identity 

for all, it is also critical that these standards does not end up excluding sections of 

people. 

 

Structure of the “Name” field of the resident is a classic example where a decision 

had to be made to use whether a western style naming convention where first 

name, middle name, and last name are captured separately or to use a single field 

name concept to accommodate all kinds of names from single word to multiple 

words. Considering the fact that, in India, several people have single word name 

(even 1 character names) to names having more than 4 or 5 words, it was decided 

by the DDSVP committee to use a single field to capture name. 

 

Similarly, in India, we neither have a standardized address format nor have well 

defined geographic boundaries beyond villages. This creates issues when trying to 

map addresses in a standard way. Various forms issued by existing systems vary 

greatly when it comes to capturing addresses. It was felt that a standardized 

address structure must be created to ensure structured, electronic matching but at 

the same time ensuring it caters to rural, semi-urban, and urban addresses. 

 

It was also essential to ensure a full Date of Birth (DoB) with proof is not mandated 

since many people in India have no knowledge of exact date of birth or have no 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 33 

documentary evidence. To ensure no one is excluded due to this, Aadhaar system 

allows either age to be captured or a full date of birth to be captured when 

available. 

 

Another issue related to establishing identity is the fact that residents need to have 

some proof of their name and address while enrolling for Aadhaar. Although a 

large list of Proof of Identity (PoI) and Proof of Address (PoA) documents are 

allowed, it was essential that the enrolment process also included residents who 

may not have any of the valid documents with them. To ensure inclusion, a concept 

of introducer was created that allowed residents with no PoI or PoA documents to 

be introduced by a valid listed introducer. In such cases, Aadhaar system captures 

the Aadhaar number of the introducer along with the enrolment. The Introducer 

concept was later extended to enrolment of family members through Head of 

Family (HoF). 

1.3.4 Privacy by Design 

Security and privacy of personal data has been fundamental in design of Aadhaar 

system without sacrificing utility of the national identity system. When creating a 

national identity system of this scale, it is imperative that privacy and security of 

personal data are not afterthoughts, but designed into the strategy of the system 

from day one. 

 

Aadhaar system addresses these issues at its core. Following key aspects are 

results of this. 

1.3.4.1 Aadhaar Numbering scheme 

Aadhaar number is a random number with no built-in intelligence or profiling 

information. A 12-digit number was chosen based on the identification needs of 

the population in the next couple of centuries [10]. 

 

It was also decided that, to ensure privacy, the date-of-birth and other attribute 

information should not be embedded in the number. Similarly, place of birth or 

residence using administrative boundaries (state/district/taluk) should also not 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 34 

be embedded within the number. When state/district IDs are embedded, the 

number faces the risk of becoming invalid and misleading the authenticator when 

people move from place to place. It can also lead to profiling/targeting based on 

the region/state/district that a person is from. The approach of storing intelligence 

in identification numbers was developed to make filing, manual search and book-

keeping easier prior to the advent of computers. This is no longer necessary, since 

centralized database management systems can index the records for rapid search 

and access without having to section data by location or date of birth. 

1.3.4.2 Minimal Data with No Linkage 

Since Aadhaar system has data of all Aadhaar holders of the country in a central 

repository, it was essential that data be kept to a minimum so as to provide 

identity related functions (issuance and authentication) and nothing else. This 

design philosophy is derived directly from the fact that UIDAI respects privacy of 

the residents and not hold non-essential data within its systems. 

 

In addition to having minimal data (4 attributes – name, address, gender, and date 

of birth - plus 2 optional data – mobile, email), this central database does not have 

any linkage to existing systems/applications that use Aadhaar. 

 

This essentially creates a set of data islands containing resident data across 

various applications/systems (a federated model for resident data) rather than a 

centralized model eliminating the risk of a single system having complete 

knowledge of resident and his/her transaction history. 

1.3.4.3 No Pooling of Data 

Aadhaar system is not designed to collate and pool various data and hence does 

not become a single central data repository having all knowledge about residents. 

It has no linkage information (such as PAN number, Driver’s License Number, PDS 

card number, EPIC number, etc) to any other system. This design allows 

transaction data to reside in specific systems in a federated model. This approach 

allows resident information to stay in distributed fashion across many systems 

owned by different agencies. Any transfer or collation of data across these 

distributed information silos should follow due course of law. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 35 

1.3.4.4 Yes/No Answer for Authentication 

Aadhaar authentication responds only with yes/no answer. For example, 

authentication answers questions such as “resident claims his/her name is ..., is this 

correct?” whereas it does not provide any scheme to ask questions such as “what is 

the address of resident whose Aadhaar number is ...?”. Aadhaar authentication 

allows applications to “verify” the identity claim by the resident while servicing 

them while still protecting their data privacy. 

1.3.4.5 Explicit Resident Consented e-KYC 

A balance between 'privacy and purpose' is critical to ensure convenience of online 

identity is balanced with the requirement to protect resident identity data. 

External user agencies do not have access to the Aadhaar database. Aadhaar e-KYC 

service allows resident to authorize UIDAI to share electronic version of their 

Aadhaar letter. For every Aadhaar e-KYC request, only after successful resident 

authentication, demographic and photo data is shared in electronic format (via 

biometric/OTP authentication resident explicitly authorizes UIDAI to share 

electronic version of Aadhaar letter instead of sharing physical photocopies). 

Resident authorization is NOT used for multiple e-KYC transactions, instead, every 

time agencies require electronic version of Aadhaar letter data for KYC purposes, 

resident must authorize the agency. 

1.3.4.6 No Transaction History 

Aadhaar authentication does not have any knowledge of the transaction resident is 

performing. It only knows that resident is authenticated by this agency at this time. 

Aadhaar system has no knowledge and is not designed to keep track of specific 

transaction details such as depositing money or obtaining pension or anything 

else. This has been consciously designed to ensure resident transaction history is 

not part of a central system to ensure privacy of the resident. 

1.3.5 Ecosystem Approach 

National identity projects are run in several countries by a single monolithic 

agency mandated to enrol its population. It was evident from the very beginning 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 36 

that given India’s diversity – urban/rural, rich/poor, literate/illiterate etc. – the 

Aadhaar system would be best implemented by a set of cooperating partners or 

stakeholders.  

 

Given the federal nature of the governance with strong state governments that 

implement many of the flagship schemes, it was important to enlist the state 

governments to enrol the residents of their respective states. The project needed 

enrolling agencies that would actually perform field enrolments on behalf of the 

registrars. These enrolling agencies also needed to procure standard enrolment 

kits. It was important to create a cadre of trained enrolment operators who work 

for enrolling agencies. This, in turn, required training and certification agencies. 

The ecosystem also needed device manufacturers and suppliers who would 

provide Aadhaar compliant devices for enrolment; this in turn needed a device 

testing and certification agency. A similar approach has been followed on the 

authentication and e-KYC services to ensure that the entire system can derive 

efficiencies from the Aadhaar system. 

 

The UIDAI has also engaged in continuous dialog with standardization bodies, with 

technology providers, and other partners to ensure a high degree of uniformity in 

the quality of data collected and resident experience. 

 

Such an ecosystem approach necessitated that the interfaces between these 

partners and systems were well defined and standardized. Hence, the UIDAI also 

needed to build a technology backbone that would hold together this partner 

ecosystem. 

 

At the data centres where the enrolments were processed, UIDAI needed a set of 

suppliers to provide pieces of the Aadhaar backend system, most importantly, a set 

of Biometric Service Providers (BSPs) to provide multi-modal biometric de-

duplication software solution that can de-duplicate the incoming enrolment 

requests and ensure that they are truly unique. In addition, UIDAI needed one or 

more agencies for application software development, 24x7 data centre operations, 

and security monitoring. 

 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was clear from the very beginning that a project of this scale could not bemented  

 

1.3.6 Identity as a Platform 

One of the key considerations is to keep the Aadhaar system purely focused on 

identity and nothing else. The Aadhaar system only collects minimal data just 

enough to provide unique identity, issue the Aadhaar number after biometric de-

duplication, manage lifecycle changes of that identity record, and provide a secure 

Application Programming Interface (API) for verifying the identity (online 

authentication) for various applications requiring identity verification.  

 

Designing the Aadhaar system as pure identity platform allows clear separation of 

duties and leaves usage of identity to other partners, and their various applications 

which may be built on top of the Aadhaar platform. 

 

For details, refer to program strategy document “UIDAI Strategy Overview” [1] and 

more recent “Aadhaar Technology Strategy” [5]. 

 

Figure 1: UIDAI Partner Ecosystem 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 39 

2 Aadhaar Application 

TThis chapter provides a high level overview of these modules. It is important 

to understand the application functionality and requirements for scale so that 

architecture that is implemented can be better appreciated. 

2.1 Aadhaar Application Overview 

Below figure depicts the Aadhaar application system at a high level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Aadhaar Application Overview 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 40 

Aadhaar application has three primary sub-systems or modules – Enrolment 

module that handles Aadhaar lifecycle changes, Authentication & e-KYC modules 

that provide online identity verification services, and common modules such as 

business intelligence & reporting, fraud detection, resident and partner portals. 

 

Following sections introduce key features of these modules. Later chapter 

“Application Architecture” discusses architecture and implementation details. 

2.2 Use of Biometrics in Aadhaar 

The Aadhaar biometric system design has followed global best practices. UIDAI has 

reviewed existing state-of-the-art biometric systems, consulted with the world’s 

top biometric experts, conducted a proof of concept study and has built a biometric 

system that is currently considered to be the state-of-the-art. 

 

UIDAI constituted a committee to come up with recommendations. Biometric 

Standards Committee was constituted to study the benchmarks for biometric de-

duplication accuracy in other large systems around the world and recommend the 

approach to be followed by UIDAI to achieve a high de-duplication accuracy to 

scale to a population of 1.2 billion. 

 

The committee report [11] found that while in the global context, 99% de-

duplication accuracy had been achieved using fingerprints alone in a database size 

of 50 million, 95% de-duplication accuracy could be reasonably expected using 10 

fingerprints and face at a database size of 1.2 billion in the Indian context. Hence, 

the committee recommended that UIDAI explore the use of the iris biometric in 

addition to fingerprint and face biometrics to achieve de-duplication accuracy in 

excess of 99% and also ensure total inclusion. Based on the recommendation, the 

UIDAI commissioned a PoC study to determine whether multi-modal de-

duplication could improve the de-duplication accuracy. The results of the 

enrolment PoC showed that an order of magnitude better accuracy could be 

achieved using a multi-modal de-duplication scheme including both fingerprints 

and iris. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 41 

UIDAI decided to accept the recommendations of the PoC report and capture the 

following, biometrics for the enrollment: 

 10 finger prints 

 2 iris scans 

 Photograph of face 

2.2.1 Multi-ABIS De-duplication System 

Since de-duplication at this scale (1.2 billion residents) had not been previously 

attempted anywhere in the world, UIDAI decided to procure 3 ABIS (Automatic 

Biometric Identification System) software solution to perform biometric de-

duplication as a risk mitigation strategy. 

 

Aadhaar is the first ever multi-ABIS system implemented in the world, and brings 

significant advantages: 

 It ensures that there is no vendor lock-in. If one of the ABIS solutions needs 

to be replaced (for any reason – technical or contractual), it can be done 

without bringing the entire system to a grinding halt.  

 The three ABISs compete for work based on their accuracy and throughput. 

Since payment is based on successful de-duplication (not an upfront 

payment for software), solution providers compete to improve accuracy 

and throughput aiming for a higher volume of de-duplications. 

 The deployment of multiple ABISs improves the accuracy of de-duplication. 

If any ABIS identifies a potential duplicate, it is sent to the other ABIS for 

verification. By combining the results of all 3 ABIS systems the overall 

biometric de-duplication accuracy goes up.  

 The utilization of three different de-duplication engines with different 

implementations and fusion strategies also helps to detect various kinds of 

software or data collection errors. In certain enrolments (for example in 

suspected duplicates and enrolments with poor quality biometrics) the 

enrollment data is sent to more than one ABIS to minimize the chance of an 

identification error.  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 42 

 The use of multiple ABIS engines also permits continuous monitoring. Each 

duplicate found is used as a “probe” to test the accuracy of the other two 

ABIS systems. This is critical to maintain the accuracy of the system on an 

ongoing basis. 

2.2.2 Biometrics in Authentication 

Fingerprint and iris are the biometric modalities that are being used by UIDAI to 

allow residents to authenticate themselves. Online biometric authentication is a 

1:1 verification of the biometric(s) presented at the time of authentication with 

templates generated from the data collected during enrolment or biometric 

updates. 

 

Biometric matches are not exact matches, and such system may fail in the 

following two ways: 

 False Reject – The authentication system incorrectly rejects a genuine 

claim of identity (authentication attempt). The False Reject Rate (FRR) is 

defined as ratio of the number of false rejects to the number of genuine 

authentication attempts. 

 False Accept – The authentication system incorrectly accepts an imposter 

claim of identity. False Accept Rate (FAR) is defined as ratio of the number 

of false accepts to the number of impostor authentication attempts. 

 

Similar to enrolment the accuracy of authentication may also be expressed using 

an ROC curve that shows the trade-off between FAR and FRR. One important 

difference between enrolment biometrics and authentication biometrics is while 

the resident presents all ten fingerprints and two iris images during enrolment 

only one or two fingerprint or iris is presented during authentication. 

 

To attain the best results, the UIDAI makes the following recommendations to 

application developers: 

 Capture Quality: Measure the quality of captured biometrics, and request 

the resident to re-present their biometrics for poor quality captures. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 43 

 2-Finger Authentication: Fusion allows 2-finger authentication to have 

lower false reject rate. Use it! 

 Multiple Attempts: Allow the application to have multiple attempts, before 

rejecting the business transaction. 

 Backup Authentication: Have an alternate form of authentication to allow 

users who may be unable to use biometrics for authentication. 

 Best Finger Detection: Use Best Finger Detection to guide users to use the 

best fingers for authentication. 

2.3 Enrolment Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enrolment module handles entire Aadhaar lifecycle including initial enrolment, 

corrections, subsequent demographic/biometric updates, back-end workflow 

Figure 3: Enrolment Module Overview 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 44 

related to handling enrolment exceptions, etc. Diagram above depicts the high level 

picture of the entire enrolment system. 

 

Residents are expected to enrol once and go through multiple data updates during 

their lifetime. This module is offline, batch-oriented, workflow based and mainly 

concerned about its overall throughput (number of enrolments/updates that can 

be processed through the system in a day) rather than individual transaction 

response time. 

2.3.1 Enrolment Client 

Aadhaar enrolment strategy is based on a multi-registrar model [1]. This means 

that for uniformity of data capture, process, and security, it was essential that 

standardized “Enrolment Client” (EC) software be created and given to all 

Registrars to be used by their appointed Enrolment Agencies (EAs). Enrolment 

client software is provided by UIDAI to use it in the field for first-time enrolment 

and for subsequent data updates. 

 

Enrolment client works mostly offline and has all the features necessary to capture 

resident demographic details, do local validation, local transliteration, biometric 

data capture, biometric data quality check, and capturing of necessary audit details 

such as operator biometrics, location & time. Enrolment client software also has 

built-in security features such as in-memory data encryption, encrypted data 

storage, export, etc. It also connects at regular interval to the server at CIDR and 

exchanges necessary meta-data and master data as part of a “smart sync” scheme 

to constantly be in sync with server. Enrolment client works on Windows and 

Linux laptops and can connect any of the certified biometric capture devices, 

standard scanners, and printers. 

 

Enrolment client has the following key features: 

1. Standardized Data Capture: Enrolment client captures data based on the 

Aadhaar data standards for resident name, address, etc. This software 

validates the structure of the data and ensures as much as codified data is 

used. For example, when capturing address, operator needs to just key in the 

postal pincode and rest of the information about village, district, state, etc. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 45 

are automatically populated from the common geographic region codification 

master data. Similarly, names and addresses are “transliterated” to local 

language using automated transliteration software built into the client 

software package. Operator can then make appropriate edits or corrections 

in transliterated data as required. 

2. Biometric Capture: Aadhaar enrolment captures resident biometrics as part 

of the process. This includes all fingers, both irises, and a face photograph. 

This multi-modal biometric capture require an automated quality check, 

ability to handle exceptions such as missing fingers, ability to capture a 

quality face photograph under Indian conditions, etc. These features of 

Aadhaar enrolment client have been built to balance quality and practicality 

to ensure best possible biometrics impressions are captured without 

excluding people whose biometrics are hard to capture. Every time biometric 

exception is marked, an additional photo showing the exception is captured 

and the packet is additionally signed off by a supervisor to ensure rogue 

operators are not violating processes. 

3. Resident Data Validations: Several Government systems are plagued by 

correctness of resident data such as name and address due to the fact that 

electronic data entry is not typically done in the presence of the resident. 

Although Aadhaar enrolment software allows pre-loading resident data to 

minimize demographic data entry, actual enrolment is always done in the 

presence of the resident. This ensures that all resident data (demographic 

and biometric) is captured together and resident gets a chance to validate the 

data before it is saved to an encrypted file. Aadhaar enrolment process 

mandates that enrolment agencies have a second screen (computer monitor) 

facing the resident at the time of enrolment so that resident can view his/her 

data and make corrections/suggestions at the time of capture. There is also 

an explicit step before saving data and a review screen is shown to resident 

to ensure data correctness in both English and local language. If the resident 

cannot read at all, operators are expected to read the key data (name, gender, 

date of birth, and address) back to the resident. Although at this large scale, 

there is always possibility of mistakes due to a few careless operators, such 

schemes are built into the software ensuring maximum data correctness. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 46 

4. Corrections & Updates: Residents who realize any mistake in data capture 

after enrolment process is done still have a mechanism to approach any 

operator at the enrolment centre and make necessary corrections to the data 

within a stipulated time window. In addition, this software allows residents 

to request updates to name, address, etc as per UIDAI update policy at any 

time after obtaining Aadhaar number. Several registrars are now setting up 

permanent Aadhaar centres to facilitate data update need of the resident. 

Since Aadhaar is a national identity, residents can go to any of the nearest 

centres to get this done anywhere in the country. While corrections are 

meant to handle any data entry error by the operator and always linked to 

original enrolment, update requests are independent at any later point in 

time and are tracked separately. 

5. Synchronizing with Server: Information collected by Enrolment client as 

part of enrolment process is synchronized with server at a regular interval. 

There are primarily three reasons for regular sync – (1) to ensure all packet 

metadata is sent to server for tracking enrolments and ensuring the data is 

received and processed successfully before deleting from enrolment client 

database, (2) to ensure any server side rules and policy related to enrolment 

process are enforced on the client, and (3) to ensure master data updates 

related to location codification, operator activation and de-activation, etc are 

updated at the client side at regular interval. 

6. Operator/Supervisor Security: Aadhaar enrolment client only allows 

approved operators to enrol residents. Activation requires all operators and 

supervisors to have Aadhaar numbers and also have appropriate 

certification. Only after they are activated, they can operate the enrolment 

client software. During enrolment, every packet is biometrically signed by 

operators and if there are any exceptions such as missing biometrics, it is also 

signed by supervisor. This happens at the end of each enrolment and then 

only the electronic packet containing resident data and operator/supervisor 

biometrics along with other audit data is encrypted and saved. During 

enrolment packet processing, enrolment server validates the operator and 

supervisor to ensure only valid operators are enrolling residents. This 

scheme is built to support non-repudiation and traceability for all 

enrolments. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 47 

7. Resident Data Security: Security and privacy of data within Aadhaar system 

has been foundational and is clearly reflected in UIDAI’s strategy, design and 

its processes throughout the system. UIDAI has taken several measures to 

ensure security of resident data from the time it is captured all the way to 

how it is stored within CIDR. Standardized enrolment client ensures that the 

resident data including raw biometrics is encrypted before even saving to 

disk. It is to be noted that raw biometrics is never stored anywhere without 

encryption. Enrolment client uses standard, best in class, cryptographic 

techniques while storing resident data on field enrolment stations. It uses, 

encryption based on 2048-bit PKI (which is an asymmetric public/private 

key encryption scheme) which means that no one can decrypt and misuse the 

data, even if they are in possession of encrypted enrolment packet. Every 

enrolment data packet is “always” stored in PKI encrypted, tamper evident 

files and are never decrypted, accessed, or modified during transit until it is 

reaches within secure production zone of UIDAI data centres. 

8. Process Monitoring: In general, UIDAI believes in data-driven analytics and 

continuous improvement of its processes. To enable this for the enrolment 

process, UIDAI has built-in several features within the enrolment client 

providing metadata related to the enrolment. For example, every enrolment 

packet is reviewed by a supervisor for data quality (review audits are 

captured electronically) and signed as required which means every 

enrolment is traceable in terms of “who”, “when”, “where”, “under which 

agency”, “under which registrar”, “who reviewed it”, etc. In addition, several 

metadata elements such as “how long operator spent on demographic data 

screen”, “how many times a fingerprint was captured”, etc. are collected as part 

of every enrolment packet for analysis of operator/supervisor actions and 

performance. This data is used for providing continuous improvement 

feedback on data quality to the registrars and enrolling agencies using 

UIDAI’s business intelligence platform. 

9. Multi-platform Support: Since enrolment client software is used by various 

Enrolment Agencies for Registrars across the country and since the laptop 

and devices are deployed by the agencies, it is essential that enrolment client 

software runs on multiple operating systems such as Windows, Linux, etc. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 48 

10. Plug-n-play Device Support: Entire Aadhaar system is built to be based on 

open standards and Aadhaar strategy has been to enable the ecosystem to 

provide best products at best price. By defining common APIs, standards, and 

certification, Aadhaar system allows multiple vendors to provide devices and 

components that are certified and create a healthy ecosystem. Enrolment 

devices such as fingerprint slap scanners, iris scanners, etc. are classic 

examples of this. There are many vendors who have certified devices 

complying with Aadhaar enrolment device specification allowing these 

devices to work with enrolment software in a plug-n-play fashion.  

11. Administration & MIS: Enrolment client is an offline smart-client having 

quite a lot of features. Administrative tasks for managing the software 

configuration including new operator on-boarding etc are managed through 

the administrative module accessible only to administrative users. Also, 

various data management features such as export of enrolment packets, 

import of pre-enrolment data, server synchronization, end of day activities of 

review, reporting, etc. are all provided as part of this. 

12. Ability to work offline: Aadhaar enrolment is conducted through camps 

across the country including cities, towns, villages, and remote locations. Due 

to the high-end capabilities built-in to software as described above, and due 

to the nature of connectivity, it was necessary to have enrolment client as an 

offline, smart-client software with connectivity requirements only for 

administration aspects. 

13. Master Data Management: The enrolment client is designed to be a highly 

configurable system in order to address a wide variety of on-the-field 

scenarios. Such data include region master data containing postal pin code, 

state, district, village codifications and mappings, validated and active 

operator/supervisor data, pre-enrolment data, etc. 

2.3.2 Enrolment Server 

Enrolment server handles all the functionality necessary to manage enrolment 

packets, validate them, do necessary quality checks, do demographic match for 

elimination of trivial duplicates, and most importantly orchestrate biometric de-

duplication using multiple ABIS (Automated Biometric Identification System) 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 49 

solutions to ensure uniqueness before assigning Aadhaar number to the residents. 

This module also handles lifecycle update processes such as address changes, any 

manual workflows, and cancellations. 

 

Aadhaar enrolment server components are highly scalable to handle more than 1.5 

million enrolments every day and are built to manage data stores in hundreds of 

terabytes. Entire enrolment workflow is broken up into many logical stages that 

may take anywhere from minutes to several days depending on the packet 

validation status. Key stages of enrolment server are described below. 

2.3.2.1 Packet Upload and Management 

All enrolment packets generated using the enrolment client are fully encrypted 

from the time of data capture in the field and made tamper evident. Individual 

enrolment packet contains resident data – demographic and biometric – and other 

audit data such as operator, date & time, etc. Because of the size of biometrics raw 

data, each packet is around 3-5 MB in size. Once exported from enrolment client 

software, these packets are then uploaded (data is always kept encrypted using 

2048-bit PKI scheme) to UIDAI data centres, located within India, for processing.  

 

Enrolment agency administrators export these encrypted packets and upload them 

to UIDAI data centre using a secure upload tool provided by UIDAI. These uploaded 

packets are tracked, checked for virus/malware, and checked for any tampering 

before it is moved to inside the production zone of data centre. All valid packets 

are then decrypted and moved forward through the enrolment workflow whereas 

invalid packets are rejected. Packet upload and tracking component provide MIS 

reports and analytics related to this to enable Registrars and Enrolment Agencies 

so that they can handle any exceptions, re-export and re-upload as necessary. 

2.3.2.2 Enrolment Packet Archival 

All enrolment and update packets are required to be stored in a permanent 

archival area across both data centres. Packets are always stored encrypted even 

within the archive and this module provides services to access, replicate, and 

monitor archival and replication process. It is important to note that once Aadhaar 

number is allocated, Aadhaar (UID) master is created, and biometric templates (for 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 50 

authentication) are extracted, there is no real need for accessing the raw 

enrolment packet file. Hence entire enrolment packet (original packet in encrypted 

state as it came from field) is archived and is not accessed until for any manual 

inspection or investigation. This archival system is loosely coupled and separated 

from enrolment sub-system. Following are the business requirements: 

 Archive system should allow archiving of “all” original enrolment and 

update packets as-is “forever” (few billion files of roughly 3-5 MB each) and 

provide high availability and zero loss of data. 

 Archive system should ensure data is secured and separated away from 

core enrolment and authentication systems and should support deployment 

within a separate sub-network within CIDR.  

 It should be designed to be physically disconnected and should allow on-

demand data retrieval with appropriate access control and approvals. 

Once the data is archived, any temporary copies kept in caches can be purged from 

operational data stores and backups can be taken from the archive copy. 

2.3.2.3 Data Validation 

Once the packets are uploaded and verified for viruses or tampering, next step is to 

validate the data contained within the packet to ensure authenticity and 

correctness. Following are some of the key validations: 

1. Metadata Validations: Every packet contains several metadata elements 

such as station ID, registrar code, EA code, timestamp of enrolment, 

biometric devices used, etc. This stage of enrolment server validates these 

against master data and business rules. 

2. Operator/Supervisor/Introducer (OSI) Checks: Every enrolment packet 

also captures several metadata (process data) related to enrolment such as 

who is the operator, who is the supervisor, if introducer was used or not, 

etc. and corresponding biometrics of operator/supervisor/introducer as 

required. This is to ensure that all enrolments are done by “authentic and 

active” operators/supervisors/introducers. As a best practice, in addition to 

enrolment client side validations, enrolment server also re-validates these. 

These validations include validating if they have Aadhaar, if they belong to a 

valid enrolment agency, if they are certified, and they are not black-listed. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 51 

3. Demographic Data Validations: In addition to above metadata validations, 

server also validates resident demographic data based on the business rules 

setup in the system. These include phonetic matching of name, age valid 

range check, and address structure check against postal pin code and 

geographic boundary master data. 

4. Biometric Data Quality Check: Various checks on biometric data quality 

are also performed at this stage including biometric exception check and 

face photo check. 

2.3.2.4 Demographic Match & Reduced Biometric Check 

Demographic matching ensures “trivial” duplicates are filtered out early in the 

stages so as to not waste compute for doing a full biometric de-duplication. It is 

observed that residents, without any fraudulent intention, re-enrol themselves 

when there is a delay in getting their Aadhaar. Similarly, some of the new 

operators may simply re-enrol residents without cancelling their original 

enrolment to handle corrections or data entry mistakes. Several of these “trivial” 

duplicates are caught by this module by doing a combination of demographic and 

reduced biometric matching. 

 

This module has the capability to configure various demographic searches (exact, 

partial, and fuzzy). This is done for every incoming enrolment as part of the flow. 

Once the potential list of matches is created, a 1:1 biometric match is performed 

against them to detect these trivial duplicates. Because of the 1:1 biometric match 

facility, unlike pure demographic de-duplication systems, Aadhaar application has 

the advantage of being “loose and broad” when doing pure demographic match 

since false matches anyway get filtered while doing automated biometric matching.  

 

This combined approach of using demographic and 1:1 biometric match scheme 

allows Aadhaar system to detect and eliminate trivial duplicates upfront. If a 

duplicate is not found, enrolment packets are sent to full biometric de-duplication 

system and hence there is no real risk of misses at this stage. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 52 

2.3.2.5 Manual Data Quality Check 

If specific data quality checks fail during automated data quality checks described 

above, those packets are sent to manual data quality with specific data quality 

“hints”. In addition to failed or suspicious packets, an auto sampling is also 

implemented to check quality of operators. For example, enrolment packets 

created by new operators, or operators who have higher percentage of past quality 

check issues are also subjected to stricter quality checks compared to other 

packets. At this stage itself, enrolment may get rejected if a significant quality issue 

is found. This stage is meant to catch and eliminate data entry related issues and 

other regular operator issues. 

2.3.2.6 Biometric De-Duplication 

Aadhaar system deploys 3 independent Automated Biometric Identification 

Systems (ABIS) from 3 different solution providers adhering to common ABIS API 

[12] for multi-modal biometric de-duplication. All ABIS solutions are “multi-

modal” (handles fingerprints, iris, and face) and use their internal matching and 

fusion scoring algorithm to de-duplicate. Accuracy of these solutions is monitored 

constantly using measurements of “False Matches” and “False Non-matches”. In 

addition to actual data, automated probes are also sent constantly every day to do 

these accuracy measurements.  

 

Enrolment server needs to therefore integrate with all 3 solutions using the 

standard interface API (ABIS API) and allocate de-duplication requests as per 

UIDAI policy of dynamic allocation (which uses on-going accuracy and 

performance data to decide which solution gets maximum de-duplication requests 

and which one the least). See Aadhaar Product Document [6] for details on how 

multi-ABIS systems work. 

 

ABIS middleware component of enrolment server handles all the complexities of 

multi-ABIS orchestration ensuring de-duplication is done using one or more of the 

ABIS solutions. Middleware, in addition to normal de-duplication request 

orchestration, also addresses automated probe based testing, accuracy 

measurements, and error/failure handling. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 53 

2.3.2.7 Automated and Manual Adjudication System 

All duplicates identified by ABIS systems are sent to the adjudication module. 

Purpose of this module is to ensure no resident is rejected due to potential 

occasional false matches of the ABIS systems. This module, in turn, uses an 

automated scheme to auto dispose sure duplicates based on additional SDK based 

matching. For example, if ABIS-1 declares an applicant duplicate, Aadhaar system 

has the capability to send the same request to other two ABIS solutions and also 

uses additional SDK based matching. This allows high percentage of duplicates to 

be disposed as rejects in an automated fashion. For a small percentage of 

applicants with poor quality biometrics or matching scores that are in the grey 

area, a manual inspection is performed by UIDAI adjudication team. A maker-

checker pattern is implemented to ensure “acceptance” of a system-declared 

duplicate as genuine by adjudication operator requires additional supervisor level 

verification and approval. Daily performance reports are generated for system 

monitoring. 

2.3.2.8 Aadhaar Number Generation and Allocation 

Aadhaar number is a 12 digit number. First 11-digit of the number is purely 

random and last digit is the checksum based on Verhoeff algorithm [10]. This 

module handles Aadhaar number generation, ensuring uniqueness of the number 

(that same number is not allocated to two different residents), and allocating to 

successful enrolments. Only after successful biometric de-duplication, number is 

assigned and Aadhaar master record is created. Enrolments that are rejected do 

not get any number and are stored in reject master database. 

2.3.2.9 Print & Logistics Integration 

This module, part of enrolment server, handles Aadhaar letter printing, allocation 

to appropriate printing vendor, tracking print status, and ensuring printing is 

completed through a defined workflow. This module also has the capability to re-

print specific letters, handle letter printing during Aadhaar update lifecycle, 

rejection letter printing, etc. Notice that UIDAI has multiple printing vendors 

selected through public procurement and all these are integrated using a common 

integration layer. All print documents are sent as encrypted, digitally signed XMLs 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 54 

to appropriate printing vendor based on language, geography, and other allocation 

rules. After printing Aadhaar letters, letter bags are handed over to India Post for 

letter delivery. 

2.3.2.10 E-Aadhaar Service 

E-Aadhaar is an online service for residents to print their own Aadhaar letters 

from UIDAI resident portal. This service allows residents to download digitally 

signed PDF letter once Aadhaar is generated and not wait for letter to come via 

post. E-Aadhaar site requires full 28 digit enrolment id (enrolment number with 

date timestamp all the way to seconds), name, and pin code to be entered before it 

can be accessed. In addition, security features such as captcha, One-Time-Pin 

(OTP) on mobile, etc are implemented. Once input is verified, resident is allowed to 

download digitally signed PDF which can be shared with agencies and/or printed 

for use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2.11 Update Services 

Update module handles Aadhaar lifecycle update requests such as address update, 

mobile number update, photo update, etc. Aadhaar system allows residents to 

update demographics data and biometric data based on a set of published rules. All 

      It is important to recall that Aadhaar is just a number and is designed to 

be authenticated (verified) online rather than giving significance to physical 

cards/letters, etc. That means, residents are allowed to print any number of 

letters or have colour copies of their letters! There is no special security 

mechanism or significance attached to this letter/card. Unless the number is 

authenticated online using demographics/biometric/OTP factors, this 

letter/card mean nothing. Once e-KYC service is widely adopted by various 

agencies, need for any physical letter will cease to exist, instead, residents 

can simply approach agencies for a service, use their biometrics/OTP to 

authenticate and have agency obtain digitally signed electronic version of 

Aadhaar and completely eliminate cards, photo copies, etc. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 55 

updates require resident authentication to protect Aadhaar data from 

unauthorized updates. UIDAI currently provides both assisted and self-service 

modes of updates after due authentication of the resident and validation of 

appropriate documents. This module ensures all rules are validated, resident 

authentication is done, request origination is validated, and after the update, a 

notification is mandatorily sent to resident. 

 

To provide multiple options to resident to manage any data updates, UIDAI has 

created the following update channels: 

1. Permanent Update Centre: Residents may go to a permanent update 

centre managed by a registrar where an operator helps resident with data 

process. There are two formats for the update centre – one allowing a 

complete data update including biometrics, and the second allowing only 

demographic data updates. During the complete update process, packets 

are securely generated and uploaded quite like initial enrolment.  

For demographics only updates, a lighter version of the enrolment client 

software is used. It is expected that the registrars will setup a larger 

number of demographic update centres to cater to the higher volume of 

these requests as compared to the lower volume of biometric update 

requests. In CIDR, these packets are scanned, validated, and processed via 

the update flow. 

2. Self-service Update: Residents having registered mobile with Aadhaar 

system can go to online update portal managed by UIDAI and use OTP 

authentication to request data update. After the approval workflow, update 

packets are generated and passed on to automated update flow. This mode 

allows residents to request for any demographic data update. In future, 

newer self-service channels such as mobile application may be provided. 

3. Contact Centre and/or Postal: A few limited fields are allowed to be 

corrected or updated by calling UIDAI Contact Centre and sending 

supporting documents via post. After manual inspection and approval, 

update packets are created by UIDAI and passed onto automated update 

flow.  

4. Update API: People may change mobile numbers and address frequently as 

compared to other fields and it is critical that UIDAI provide maximum 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 56 

touch points for residents to be able to easily update their data. UIDAI 

intends to provide an “Update API” to select agencies (which are already 

authentication agencies) where resident can authenticate and request data 

updates. 

 

Update features use common services that are part of enrolment server and most 

validations such as station validation, registrar/EA validation, operator/supervisor 

validation, etc. are identical to that of initial enrolment flow. 

2.4 Authentication Module 

Aadhaar authentication is the process wherein Aadhaar number, along with other 

attributes, including biometrics, are submitted online to the CIDR for its 

verification on the basis of information or data or documents available with it.  

 

Following diagram depicts the high level overview of Aadhaar authentication. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Aadhaar Authentication Overview 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 57 

 

Authentication module handles online resident authentication from various 

authentication user agencies. In addition to the main authentication service which 

offers multi-factor demographic/biometric/OTP authentication in an end to end 

secure fashion, this module also implements related services such as best finger 

detection, OTP request, etc.  

 

Aadhaar number along with certain demographic information such as name of the 

resident, date of birth, etc. being matched can cater to simple authentication needs. 

Combination of Aadhaar number and biometrics deliver online authentication 

without needing a token (such as a smartcard). During biometric authentication, 

agency collects the Aadhaar number along with one or more biometric impressions 

(e.g., one or more fingerprints, or iris impression alone, or iris impression along 

with fingerprints) which then encrypted and sent to Aadhaar authentication server 

for authenticating the resident. 

 

For example, when MNREGS beneficiary is enrolled and given a job card, resident 

could be biometrically authenticated against Aadhaar system to verify his/her 

Aadhaar number along with name and age. Similarly, while disbursing wages, 

beneficiary may be asked to provide Aadhaar number and one or more fingerprint 

impressions to authenticate before cash is disbursed. 

 

Authentication focuses on matching a person’s identity based on the reliability of a 

credential offered. Various agencies have different requirements for the degree of 

assurance required while authenticating beneficiaries/customers. When 

authenticating a resident, multiple factors may be used to strengthen the 

authenticity of the request. 

 

In general, following are the 3 categories of factors: 

1. What you have: Something the user uniquely has (e.g., a card, security 

token, mobile phone, tablet/laptop computer accessing email, etc.). 

2. What you know: Something the user knows that is not public (e.g., a 

password, PIN, secret question, etc.). Demographic details such as date of 

birth may also be classified in this category although they are generally 

considered weak factors. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 58 

3. Who you are: Something the user individually is or does (e.g., fingerprint 

pattern, iris pattern, signature, handwriting, etc.). 

  

Aadhaar authentication provides multi-factor authentication based on “what you 

have” using mobile phone and “who you are” using resident Fingerprints and Iris. 

By combining one or more factors, authentication of the resident could be 

strengthened. In addition, Authentication User Agency (AUA) specific factors such 

as ATM cards or smart cards or passwords may also be used in conjunction with 

Aadhaar authentication to further strengthen user authentication. 

2.4.1.1 Federated Authentication Model 

UIDAI offers Aadhaar authentication as a federated model. This implies that 

Aadhaar authentication usually works in conjunction with and strengthens an 

AUA’s existing authentication system (as opposed to replacing an AUA’s existing 

authentication system). 

 

Most authentication systems could be described as “local” (i.e., pertaining to 

and/or valid for a few services, situations or entities) and “revocable” (wherein an 

existing identity factor could be revoked and reissued as a result of expiry, 

compromise or other valid reasons). Such revocable, local authentication systems 

come with set of strengths and limitations. Aadhaar authentication system, on the 

other hand, could be described as “global” (because of its applicability across 

situations, AUAs and services) and “non-revocable” (because Aadhaar identity 

factors such as fingerprints and iris scans cannot usually be revoked/replaced). 

Global, revocable/permanent authentication systems come with their own set of 

strength and limitations. 

 

In the federated authentication model envisaged by UIDAI, the global-irrevocable 

authentication Aadhaar authentication system co-exists with and strengthens the 

local-revocable authentication systems of AUAs. It is expected that such a 

federated approach would eventually result in authentication systems which are 

stronger and more reliable than those that are based either only on global-

irrevocable systems or only on local-revocable systems. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 59 

The following are some types of situations where an AUA could use Aadhaar 

authentication either on a federated authentication mode or on a standalone basis:  

1. One time usage: When enrolling a new customer or creating a new service 

account for an individual. Examples are the issuance of a new PAN card, a 

new passport, creation of a new bank account or an internet service account 

for an online business. The AUAs in all such cases could authenticate an 

applicant’s identity using the applicant’s Aadhaar PID before issuing their 

own authentication factors. 

2. Periodic Usage: AUAs can also use Aadhaar based federated authentication 

system for periodic update of their customers’ (or employees’ or 

associates’) identity information. Examples are using Aadhaar 

authentication as a basis for renewing an Aadhaar holder’s KYC data, the 

address of a bank account holder, etc. 

3. Transactional Use: AUAs can also use Aadhaar based federated 

authentication system for carrying out any of their other business 

transactions. Examples include banks that authenticate a customer’s 

Aadhaar PID as well as bank-related identity information (account 

number/user id along with password/OTP, etc.) before enabling banking 

transactions such as funds transfer, funds withdrawal, etc.  

 

It is important however, to note that the federated model does not mandate the 

existence or use of an AUA’s local-revocable authentication system in conjunction 

with Aadhaar authentication system. If an AUA so wishes, they could use only 

Aadhaar authentication to enable their services. 

2.4.2 Authentication APIs 

Aadhaar authentication is an online service offered by UIDAI to approved 

organizations to verify identity claim by the resident. This service is offered via an 

Application Programming Interface (API) that allows organizations to integrate 

Aadhaar authentication within their applications. Aadhaar Authentication API [13] 

is an open, published specification and works with applications written in any 

programming language, running on any computer or device, using any network 

including mobile networks. In addition to core authentication API, there are two 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 60 

more supporting APIs – Aadhaar Best Finger Detection (BFD) API [14] and 

Aadhaar One-Time-Pin (OTP) Request API [15]. 

2.4.2.1 Best Finger Detection (BFD) 

During the initial authentication POC studies, it was identified that the quality of 

fingerprints may vary considerably between fingers of the same resident. This 

could be due to many reasons, including wear and tear on the finger, ability to 

present a finger to the sensor, or errors during enrolment. 

 

It may thus be useful to appraise each resident of finger providing the best 

accuracy and successful matching results. We shall refer to this finger with best 

accuracy as the best finger. Resident may possess one or more best fingers. This 

knowledge allows the resident to provide his/her best finger(s) during 

authentication thereby increasing the chances of successful match. 

 

Since a resident would normally not be aware of the best fingers to use for 

authentication, a Best Finger Detection process was defined where the resident 

would send a set of fingerprints (as captured from an authentication device) to the 

UIDAI server which would respond with the list of fingerprints that the resident 

could use for the purpose of UIDAI authentication. The value of this method was 

proved through additional POC studies that were carried out by the UIDAI [4], 

where the use of BFD brought down the False Reject Rate for residents 

significantly and thereby improved accuracy. 

 

The UIDAI has provisioned the Best Finger Detection as an API [14], which is 

available to all user agencies.  UIDAI has mandated that this be used by user 

agencies to improve speed, and accuracy and overall customer satisfaction. 

 

It is further recommended that residents be required to go through this process if 

they are unable to successfully authenticate themselves in a repeatable manner, 

and that all user agencies provision an appropriate application on authentication 

devices for this purpose. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 61 

2.4.2.2 One-Time-Pin (OTP) 

OTP authentication allows AUAs to verify the possession of the mobile phone by 

resident by sending the OTP to his/her mobile phone and re-verifying it. One Time 

Pin (OTP) is a mechanism to do achieve this. 

 

In a nutshell, OTP request can be initiated by the resident (via IVR or SMS) or by 

the application on behalf of the resident. OTP API [15] specification allows 

“Application Initiated” OTP request. Irrespective of how OTP request was initiated, 

a 6-digit OTP is always delivered on the resident’s mobile/email and application is 

expected to capture and validate using Authentication API. Usage of OTP is 

particularly useful for web applications such as online insurance renewals, e-

Governance portals, and so on. 

2.4.3 Authentication Server 

Aadhaar authentication server implements all the logic required to match 

incoming authentication request against the authentication database where 

demographics and biometric data of Aadhaar holders are stored. Authentication 

server does the necessary matching of demographics, biometric, and OTP values 

and respond with appropriate response as per API specifications. Authentication 

server also implements server side logic for BFD and OTP request APIs. In addition 

to matching logic, it also implements inline fraud detection, auditing, SMS/Email 

resident notifications, and event publishing for use by Business Intelligence (BI) 

and offline fraud analytics. 

 

Authentication server is currently benchmarked to handle 100 million 

authentication requests in 10 hrs with sub-second average response time. 

Authentication service, being online and available 24x7, runs in active-active 

configuration across both data centres with load balancers and mutual fail-over 

scheme. It is built to scale horizontally and can be scaled further simply by adding 

application server nodes to the cluster. 100 million authentications a day also 

means that several billion BI events and audit records are created every few days 

which necessitates both BI and audit data stores to be able to handle huge number 

of data records. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 62 

 

For every authentication request, at a high level, authentication server logic is as 

follows: 

 Validate the ASA code and license key 

 Validate the input for strict XSD compliance 

 Validate AUA code, license key, and digital signature 

 Validate input as per API specification 

 Do inline fraud check 

 Do necessary demographic/biometric/OTP matching 

 Publish BI event 

 Form response and digitally sign it 

 Write encrypted, signed audit containing input and output 

 Send response 

2.5 E-KYC Module 

Verification of the Proof of Identity (PoI) and Proof of Address (PoA) is a key 

requirement for access to financial products (payment products, bank accounts, 

insurance products, market products, etc.), SIM cards for mobile telephony, and 

access to various Central, State, and Local Government services. Today, customers 

provide physical PoI and PoA documents. Aadhaar is already a valid PoI and PoA 

document for various services in the financial, telecom, and Government domains.  

 

The Aadhaar e-KYC API [16] provides a convenient mechanism for agencies to offer 

an electronic, paper-less KYC experience to Aadhaar holders. The e-KYC service 

provides simplicity to the resident, while providing cost-savings from processing 

paper documents and eliminating the risk of forged documents to the service 

agencies. UIDAI has published its policy on e-KYC [17] and e-KYC API is 

implemented as per the policy.  

 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 63 

Following are the salient features of the service. 

1. Paperless – The service is fully electronic, and document management can 

be eliminated. 

2. Consent based – The KYC data can only be provided upon authorization by 

the resident through Aadhaar authentication, thus protecting resident 

privacy.  

3. Eliminates document forgery – Elimination of photocopies of various 

documents that are currently stored in premises of various stakeholders 

reduces the risk of identity fraud and protects resident identity. In addition, 

since the e-KYC data is provided directly by UIDAI, there is no risk of forged 

documents.  

4. Inclusive – The fully paperless, electronic, low-cost aspects of e-KYC make 

it more inclusive, enabling financial inclusion.  

5. Secure and compliant with the IT Act – Both end-points of the data 

transfer are secured through the use of encryption and digital signature as 

per the Information Technology Act, 2000 making e-KYC document legally 

equivalent to paper documents. In addition, the use of encryption and 

digital signature ensures that no unauthorized parties in the middle can 

tamper or steal the data.  

6. Non-repudiable – The use of resident authentication for authorization, the 

affixing of a digital signature by the service provider originating the e-KYC 

request, and the affixing of a digital signature by UIDAI when providing the 

e-KYC data makes the entire transaction non-repudiable by all parties 

involved.  

7. Low cost – Elimination of paper verification, movement, and storage 

reduces the cost of KYC to a fraction of what it is today.  

8. Instantaneous – The service is fully automated, and KYC data is furnished 

in real-time, without any manual intervention.  

9. Machine readable – Digitally signed electronic KYC data provided by 

UIDAI is machine readable, making it possible for the service provider to 

directly store it as the customer record in their database for purposes of 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 64 

service, audit, etc. without human intervention making the process low cost 

and error free. 

10. Regulation friendly – The service providers can provide a portal to the 

Ministry/Regulator for auditing all e-KYC requests. The Ministry/Regulator 

can establish rules for secure retention of e-KYC data (eg. storage method, 

period of storage, and retrieval among other things). 

2.5.1 Compliance with the IT Act, 2000 

The data provided to the service provider is fully in compliance with the 

Information Technology Act (IT Act), 2000 as follows: 

1. The e-KYC electronic record provided by the UIDAI is equivalent to the 

Aadhaar letter (Section 4 of the IT Act, 2000); 

2. A cryptographic hash of the KYC data is computed and attached. The SHA-2 

digital hash function algorithm is used. Hashing ensures that any tampering 

of the data in transit is detected (Section 3 of the IT Act, 2000); 

3. The KYC data along with the computed hash are encrypted using a 

combination of AES-256 symmetric key and RSA-2048 PKI encryption, form 

a secure electronic record. The encryption ensures that only the intended 

service provider can view the data provided by the UIDAI (Section 14 of the 

IT Act, 2000); and 

4. The encrypted data and hash are digitally signed by the UIDAI using RSA-

2048 PKI. The secure digital signature of UIDAI can be verified by the 

service provider to ensure the authenticity of the source (Section 15 of the 

IT Act, 2000). 

 

The e-KYC service is compliant with the latest standards notified in the 

Information Technology (Certifying Authorities), Amendment Rules 2011 – 25th 

October 2011(GSR 782(E) & GSR 783(E)-Standards (Hash & key Size), usage 

period of private keys, and verification of Digital Signature Certificate. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 65 

2.5.2 E-KYC API 

Aadhaar e-KYC is an online service offered by UIDAI to approved organizations to 

obtain digitally signed electronic Aadhaar record. E-KYC works only with 

resident’s Aadhaar authentication and explicit consent. This service is offered via 

an Application Programming Interface (API) that allows organizations to integrate 

Aadhaar e-KYC within their applications. Aadhaar e-KYC API [16] is an open, 

published API specification and works with any application written in any 

programming language, running on any computer or device, using any network 

including mobile networks. 

 

Broadly speaking, e-KYC API can be used under the following two scenarios: 

1. New customer/beneficiary: 

a. The KUA captures resident authentication data and invokes the 

Aadhaar e-KYC API through a KSA network;  

b. The KYC data returned within the response of the e-KYC API is 

digitally signed and encrypted by UIDAI; and  

c. Using the resident data obtained through this KYC API, the agency 

can provision the service instantaneously. 

2. Existing customer/beneficiary:  

a. The KUA captures resident authentication data and invokes the 

Aadhaar e-KYC API through a KSA network;  

b. The KYC data returned within the response of the e-KYC API is 

digitally signed and encrypted by UIDAI;  

c. Since the resident is already a customer/beneficiary, the KUA can 

use a simple workflow to approve the Aadhaar linkage by comparing 

data retrieved through the e-KYC API against what is on record (in 

paper or electronic form); and  

d. Once verified, the existing customer/beneficiary record can be 

linked to the Aadhaar number. The Aadhaar e-KYC API returns 

digitally signed data allowing electronic audit. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 66 

2.5.3 E-KYC Server 

Aadhaar e-KYC server implements all the logic required to serve incoming e-KYC 

requests. E-KYC server, in turn, uses Aadhaar authentication service for resident 

authentication to ensure only resident authenticated and authorized requests are 

serviced. In addition, it also implements inline fraud detection, auditing, 

SMS/Email messaging as required, and event publishing for use by Business 

Intelligence (BI) and offline fraud analytics. 

 

At a high level, e-KYC server implements the following logic: 

 Validate the KSA code 

 Validate the input for strict XSD compliance 

 Validate input as per API specification 

 Invoke authentication API 

 Invoke Common Service API to fetch resident demographic data and photo 

 Publish BI event 

 Form response and digitally sign it 

 Write encrypted, signed audit containing input and output 

 Send response 

2.6 Common Modules 

Quite like any other large scale applications, Aadhaar system also is built using 

common components that can be reused across Enrolment and Authentication. 

Common modules consists of business intelligence & reporting, fraud detection, 

resident and partner portals, and other common platform capabilities such as 

scalable data stores, data encryption/decryption, high volume messaging, etc. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 67 

2.6.1 Technology Platform 

This module consists of all common technology components. This includes data 

source access, file system access, rules engine, messaging, encryption/decryption, 

number generation, data caching, data synchronization, etc. All common 

components used across various other modules are part of this. 

2.6.2 Internal APIs 

There are several internal APIs that are accessed by other applications within 

CIDR. Encapsulating common functionality into a reusable service (REST style 

service or Java API) ensures functionality and business rules are centrally managed 

and not repeated. Examples of such internal APIs/services include: 

 Enrolment Status Service (ESAPI) 

 Common Search Service (CSAPI) 

 Advanced Search Service (ASAPI) 

 Internal OTP API 

 Common Update Service 

2.6.3 Business Intelligence & Reporting 

At UIDAI, Analytics and Reporting has been a constituent of the Aadhaar 

implementation strategy from inception. A cross-functional analytics and 

continuous improvement team was created at an early stage to suggest and 

oversee usage of analytics across the organization. Business Intelligence (BI) 

systems provide the extensible infrastructure platform, framework and associated 

tools to help meet goals of the Analytics and Reporting function. 

 

The BI module provides comprehensive analytics and reports for: 

 Partners of UIDAI for effective field management and process improvement 

via partner portal 

 UIDAI internal users for program monitoring, management, and continuous 

improvement 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 68 

 Public at large via public portal for providing transparency 

 Statisticians and researchers to allow anonymized aggregate data sets for 

purposes of field studies and advanced research 

2.6.4 Application and Information Portals 

Portals provide a single window for residents, Registrars, Authentication User 

Agencies (AUAs), other partners in the ecosystem as well as UIDAI officials to view 

and manage various types of data. These portals provide static and dynamic data, 

manages access privileges, and manages data that are real-time and periodic in 

nature. Primarily these fall into 4 categories: 

2.6.4.1 Resident Portal 

All resident facing services such as enrolment status tracking, e-Aadhaar print 

service, self-service update service, etc are provided via this portal. 

2.6.4.2 Partner Portal 

All partner features are made available via partner portal. Partner document 

repository, partner level administration (which can be done by partners), 

reporting and BI services, etc go into this portal. These include enrolment, 

authentication, and e-KYC related features. 

2.6.4.3 Internal Portal 

UIDAI users have access to internal portal which allows approved users within 

UIDAI organization to access and manage various business rules, reports, and 

watch the overall performance of the system. 

2.6.4.4 Data Portal 

UIDAI also publishes machine readable datasets (fully anonymized analytics data) 

through Data Portal as part of ‘Government Open Data Initiative’ [18]. UIDAI Data 

Portal has a Catalogue of data sets. Various data sets related to enrolment and 

authentication are available in machine readable format. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 69 

2.6.5 Application Monitoring 

The primary purpose of the monitoring solution is to proactively identify potential 

issues in system in terms of service availability, throughput, and response time. 

Aadhaar application monitoring module is non-intrusive, near real-time, and 

graphical. This helps various business metrics to be monitored visually and alerts 

are created based on system defined rules. Monitoring module also allows hourly, 

daily, and weekly analysis of issues. 

2.6.6 Fraud Detection 

Since Aadhaar system only deals with identity management and identity 

authentication, UIDAI concerns itself only with identity fraud. Since Aadhaar 

identity is verified online against strong factors such as biometrics or OTP, using 

fake numbers, forged Aadhaar letters, or usage of someone else’s number will not 

work. UIDAI has setup a fraud detection system to detect, investigate, and manage 

any potential cases. Since Aadhaar system uses biometrics to de-duplicate every 

enrolment, enrolling under a fake name or address does not help since residents 

can only get one identity that is valid for life. If an Aadhaar record is found to be 

fraudulently obtained, Aadhaar system has the ability to cancel that Aadhaar, thus 

instantly disabling any subsequent authentication and usage. 

 

For details, refer to Aadhaar Product Document [6]. 

 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 71 

3 Architecture Principles 

TThis chapter covers architecture principles used in building Aadhaar system 

ensuring openness, vendor neutrality, scalability, and security. Before introducing 

Aadhaar architecture principles, this chapter looks at software system architecture 

trends over the last couple of decades and looks at some of the high impact 

changes in recent years. This understanding is critical in appreciating Aadhaar 

architecture and the reasoning behind those decisions. 

3.1 Architecture Evolution & Trends 

Software architecture has evolved from mainframe era to cloud computing era and 

as part of that change, computing, storage, and programming technologies also 

have evolved. Monolithic architecture has given way to large scale distributed 

computing architectures, proprietary storage and compute has given way to 

commodity computing and large scale low cost storage, user interface has changed 

from character based fixed green screens to highly interactive gesture based 

mobile interfaces, and nearly no connectivity to having pervasive connectivity. 

Massive increase in the amount of data managed within applications from mere in 

kilobytes and megabytes to petabytes and hexabytes have forced architects to 

rethink on design choices for computing and data store within applications. 

 

These changes have had huge impact when building next generation, large scale 

applications. Subsequent sections in this chapter explore these trends, changes, 

and set the context for understanding Aadhaar architecture strategy. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 72 

3.1.1 Scale-up, Scale-out, and Open Scale-out 

Over the last four decades, software system architecture has evolved from a 

monolithic, single large server deployment to highly distributed, heterogeneous 

technology deployment. This has resulted in significant architecture and design 

shift from a vendor locked-in system to highly open and distributed system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Architecture Evolution 

3.1.1.1 Scale-Up Architecture 

In the 70’s and 80’s, large scale systems were designed to be monolithic and 

deployed in a large mainframe class machine. These systems are built using 

specific technologies provided by one vendor who also provide the large hardware 

for deploying these applications. Once you decide to build using technology 

provided by one mainframe (or similar large scale computing platforms) vendor, 

then for several years following it, application scaling, system upgrades, 

maintenance, etc all completely depends on that particular vendor. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 73 

Such architecture is referred to as scale-up architecture where entire system needs 

to scale within one machine (by adding more computing power within the 

machine) and that too using the technology provided by that vendor. Most of the 

time, significant upfront investment needs to be made planning for future growth 

and scaling instead of upgrading the systems at a later stage when it is really 

required to do so. 

 

Several financial systems built in the 80’s and even in 90’s were completely 

designed this way and it is extremely hard for these applications to move out of 

this to an open architecture of today. Even when systems were built in the non-

mainframe era using languages such as C/C++ running on a Unix platform, several 

applications entirely depended on large scale vertically scalable machines with 

enormous single central database systems. Most of these applications completely 

depend on the platform provider to upgrade compute, memory, maintenance, etc 

and have no choice to choose an alternate provider.  

 

Such lock-in makes the entire business at the mercy of one of two vendors. 

Enterprise having such applications could never take advantage of the sharp 

decrease in prices of compute, storage, etc and constant increase of compute speed 

around them as technology evolves rapidly. 

 

When building large scale e-Governance application, it is more so important not to 

lock entire system to one or two technology provider. This ensures vendor 

neutrality, ability for Government departments to make open procurement at best 

prices when required, and completely avoid upfront investment.  

3.1.1.2 Scale-Out Architecture 

From the 90’s, with the advent of client-server architecture, application 

architecture changed to support different components of an application to be 

deployed in different machines and allowing them to scale independently. Most of 

these systems were built to run on Unix or Windows environments and 

middleware technologies allowed components to communicate with each other 

across machines over a network. Large scale applications deployed within 

enterprises and early Internet applications followed this architecture. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 74 

Although capability to scale horizontally (across machines) at the application 

server layer exists in these applications, most of them depended on a large 

database node that can only scale-up since use of distributed data stores were not 

at all common. Interestingly, several of these applications eventually had lock-in to 

a particular application server or database server vendor. Also, even with 

horizontal scaling (scale-out), uniformity of the computing environments such as 

use of same hardware or OS platform across all application server nodes was 

assumed. For example, application depending on a large RDBMS vendor has no 

choice to depend on a uniform, expensive, high-end storage below to gain 

performance and scale. 

 

Although scale-out architecture allowed scaling as the systems grew, use of 

heterogeneous (different OS, different storage, different sized machines, etc all 

within same application deployment) environment was rare. It is important to 

note that most large scale e-Governance applications got into this trap and 

eventually is at the mercy of specific vendors for upgrades, maintenance, etc not 

having capability to take any advantage of crashing prices and significant 

technology changes. 

3.1.1.3 Open Scale-Out Architecture 

With significant maturity of cloud platforms and very large scale Internet class 

applications over the last 5 years, application architecture also evolved into a 

highly scale-out (distributed across 1000’s of machines), highly open, 

heterogeneous taking constant advantage of newer high speed, low cost hardware 

and storage. 

 

Open scale-out architecture does not depend on specific computing platform, 

specific storage, specific OS, specific database vendor, or any specific vendor 

technologies to scale. Such applications are built completely using open source or 

open technologies and architected to address scalability in a vendor neutral 

fashion and allow co-existence of heterogeneous hardware within same 

application. Most importantly, such architecture also allows delayed procurement 

of hardware from any vendor as the systems grow. Every component of the core 

system must follow this principle in order to ensure entire system gains these 

advantages.  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 75 

3.1.2 Commodity Computing 

Commodity technology refers to hardware and software technology that are 

completely commoditized and are cheaply available from a variety of providers. 

Applications that are built on such technologies are built on commodity computing 

architecture. 

  

Whenever building massively scalable systems requiring large compute and 

storage capability, choice of computing architecture become extremely critical. 

With Aadhaar applications needing trillions of computations every day and storage 

of petabytes of data, this was one of the most important architecture decisions. 

Choice existed from custom computers with massive parallel computing capability, 

mainframes, special chipsets, and use of commodity x86 platforms. With the 

maturity of cloud computing and recent success of massively scalable Internet 

class applications such as social networking have clearly demonstrated that 

applications can indeed be built on top of open source taking advantage of large 

deployment of commodity hardware. 

 

Applications that are architected to only use commodity hardware fully benefit 

from using best technologies at a very cheap cost and allow applications to not be 

tied to a proprietary and vendor specific technology. Large e-Governance 

applications should always choose this instead of custom alternatives. Such 

applications also benefit best when technology evolves at a rapid pace. 

3.1.3 Distributed Platforms & Data Stores 

As Google, Yahoo, Amazon, and other early dominant Internet giants built their 

backbone to cater to massively distributed applications handling petabytes of data, 

a new way of looking at commodity, open, massively distributed computing 

platforms and data stores emerged. Google demonstrated how cheap compute can 

be used and still achieve massive scalability for applications and data. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 76 

3.1.4 Ubiquitous Connectivity 

Mobile connectivity revolutionized Indian communication landscape from a very 

limited landline penetration to nearly a billion mobile connections across the 

country. Mobile networks are now used for all kinds of communication in payment, 

entertainment, and other verticals and use of SMS as an effective two way 

communication scheme. While traditional broadband and Internet use continued 

to grow very slowly over last several years, in 2012, Indian mobile Internet usage 

exceeded all other channels. 

 

With nearly all of India now covered under mobile networks, Telcos continue to 

aggressively expand their 2G and 3G coverage across country, and with really 

cheap tariffs, being online and connected is now taken for granted. Several 

applications that are being built now take advantage of this pervasive connectivity 

and allow users to access massive amount of information online and share with 

other users. 

3.1.5 Mobile, Tablet, and Handhelds 

One of the most transformational technologies that completely changed the face of 

India is the massive adoption of mobile phones. Desktop usage, especially in India, 

was very low and nearly stagnated without mass scale adoption. From nearly no 

phone access, Indians went straight into using mobile phones in a massive way. A 

combination of regulatory approach and open market approach allowed many 

companies to compete and provide best value to end customers. Cheap phones, 

extremely affordable tariffs, and most importantly a massive distribution network 

to handle pre-paid plans and recharges allowed an explosion of user base to a 

billion people. 

 

Desktops, quite like landlines, never penetrated into daily lives of masses due to its 

price, complexity, interaction model, and its inability to be mobile. Whereas smart 

phones, with its affordable prices, simplicity, easier touch based interaction, and 

mobility has caught the imagination of masses. Smart phone adoption in India is 

exploding at a rapid pace and will surely become the de-facto computing device for 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 77 

millions of people that can be used for communication, games, entertainment, and 

business purposes anywhere, anytime. 

 

Along with smart phones, larger form factors such as tablets directly address all 

the issues that plagued desktop adoption. With natural touch based interaction, 

connectivity, and mobility, tablets will allow seamless content access and social 

interactions across many verticals such as education, entertainment, and 

healthcare. 

3.1.6 Impact of Technology Trends in Aadhaar 

Aadhaar system is built to last and assuming key trends described in above 

sections. Use of open scale-out architecture, use of commodity hardware, online 

APIs that can work on mobiles and tablets, and use of large scale distributed data 

stores for petabytes of data management and large scale analytics within Aadhaar 

application are reflection of embracing these trends. 

 

Aadhaar application is built using a completely open, heterogeneous, and scale out 

architecture ensuring no vendor or technology lock-in throughout the system. 

Aadhaar application already runs on hardware (compute, storage, and network) 

from different vendors procured at different time as the system grew thus taking 

advantage of cheaper and better hardware available from any vendor. Choice of 

large scale distributed data store and analytics systems within Aadhaar application 

takes advantage of recent developments in big data architecture. Aadhaar 

application uses simple commodity storage for large scale data storage and 

ensures redundancy and disaster recovery through external means. 

 

Open APIs and technology dependency of Aadhaar enabled applications are built in 

such a way that these applications can work from small handheld devices to smart 

phones to tablets to laptops. This ensures broad adoption of these APIs from a 

simple attendance style embedded system all the way to larger applications 

running on a full-fledged laptop. In addition, these APIs work over simple 2G 

network or through any other network across the country. Instead of offline 

technologies, processes, and frameworks, Aadhaar system is built from ground up 

as an online system taking advantage of ever increasing connectivity. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 78 

3.2 Aadhaar Architecture Principles 

At the beginning of this mass scale project, it was critical that fundamental 

principles be clearly laid out based on which all subsequent technical decisions are 

made. These principles ensured entire team understood the axioms by which 

technology choices were made. For any large e-Governance project, it is critical to 

write these rules down clearly so as to enable current and future teams to make 

right decisions as an on-going basis. 

3.2.1 Key Assumptions 

1. E-Governance applications should look for transformational 

opportunities – Instead of imitating paper process in electronic form, 

applications should look to fully embrace mobile adoption, digital signature, 

online authentication, etc. to transform the processes completely and offer 

wider choice and no/low touch point for residents to interact directly. It is 

critical that project design are aligned to larger trends and designed for 

next decade rather than past. 

2. Technology rapidly evolves and requires continuous adoption – 

Technology evolves way too fast and Government projects with its rigid 

vendor selection and long procurement cycles do not align naturally to 

adapt to this trend. Also, making changes to existing implementations 

require contract changes, new RFP (Request for Proposal), etc. Hence it is 

very essential that entire system is built to be open (standards, open API, 

plug-n-play capabilities), components coupled loosely to allow changes in 

sub-system level without affecting other parts, architected to work 

completely within a heterogeneous compute, storage, and multi-vendor 

environment. 

3. Ability to select best product at best rate in as and when required – 

Large e-Governance applications should be designed to get best cost and 

performance advantages of natural technology curve (constant increase of 

speed and decrease of cost) and still aligned to open procurement practices 

of the Government. For this to happen, architecture should be open, use 

commodity hardware, have no vendor lock-in, and designed for horizontal 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 79 

scale. This allows buying of commodity compute, storage, etc only when 

needed at best price. 

4. Incentive aligned design – Whenever significant changes are made, 

solution must naturally cater to the incentives of the “participants” within 

that system. In any transformational e-Governance project, if design is not 

aligned to natural incentives of residents, Government, and partners, there 

is a high chance that the project will fail. 

 

Given the above assumptions, Aadhaar technology team laid out a list of 

architecture principles based on which all design decisions were made. Following 

sections describe these principles in detail. 

3.2.2 Openness and Vendor neutrality 

Avoiding vendor lock-in was essential to Aadhaar architecture due to two primary 

reasons. Firstly, this is a Government program built as the national identity 

platform and need to sustain openness in the long run and secondly a program of 

this scale has never been attempted before. 

 

Recall the section above on key assumptions. As we discussed in that section, rapid 

pace of technology change, ability of the Government to use best products available 

in the market at any point in time, and openness required to ensure best cost 

benefit during open procurement are key drivers to ensure vendor neutrality. 

When a system is architected using open hardware or software components 

available from multiple vendors, naturally Government benefits from healthy 

competition among vendors and allows adoption of best technology available in 

the market. 

 

In addition, a project of this scale has never been attempted before and hence it 

was critical to ensure complete openness to system architecture. This allows UIDAI 

to use best-in-class components at cheapest rate and most importantly de-risk the 

project by using multiple providers when required. Openness also allows UIDAI to 

replace a particular component if required without affecting whole system. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 80 

All key components of Aadhaar system are fully open and are built using open 

source components running on top of commodity hardware. This is achieved 

through adoption of open standards, extensive use of open source, and use of 

commodity and heterogeneous components at software and hardware level. In 

addition, whenever required, certification is mandated to ensure vendors and 

providers are indeed compliant to standards and specification laid out by UIDAI. 

3.2.2.1 Use of Standards, APIs, and Open Source 

Keeping entire system completely open without use of proprietary interfaces and 

technologies is the only way a program like Aadhaar can have longevity and ensure 

continuous adoption of best-in-class technology. Openness comes from use of 

standards, open source, and creating vendor neutral APIs and interfaces for all 

components.  

 

Aadhaar system is entirely built using open source components and takes heavy 

advantage of international open standards such as ISO biometric standards, data 

representation standards such as XML, JSON, Protocol Buffers, security standards 

such as 2048-bit PKI, AES-256, LDAP, messaging standard AMQP, open protocols 

such as HTTP, and so on. Aadhaar system is built using widely adopted open 

source components and uses Java as the primary programming language to build 

all applications. 

 

Use of open APIs addresses two primary goals – loose coupling of components 

allowing independent evolution of each component without affecting the other, 

and having a vendor/provider neutral layer allowing use of one or more providers 

and replacement of a provider with another without affecting other parts of the 

system. In addition to the above goals, having API driven approach allows test 

automation for automated regression testing, continuous re-factoring and tuning 

within an implementation, and better component level versioning and lifecycle 

management. 

3.2.2.2 Use of Commodity Hardware 

When building a very large system requiring massive compute and storage, there 

are two ways to try achieving it. One way to meet the above goal is to use 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 81 

proprietary or specialized hardware tuned for specific purpose. This approach, 

although may give faster short term benefits, completely locks architecture in that 

specific hardware and technology and will not allow adoption of newer and 

cheaper technologies in the long run. Also, typically such specialized or proprietary 

technology forces upfront investments and on-going maintenance from the same 

vendor forever. On the other hand, if a system is built using open architecture and 

commodity hardware (one that is cheaply available from several vendors) that 

allows adoption of newer technologies and cheaper hardware whenever required. 

In the long run, such open systems work out to be most efficient and cost effective 

for changes, upgrades, and on-going maintenance. 

 

Aadhaar system is completely built using an open commodity hardware 

components using several cheap blade/rack servers on x86 platform running 64-

bit Linux. Such open scale-out architecture allows UIDAI to procure latest blade 

servers from any vendor at the best price whenever required. Similarly, storage 

layer also does not depend on any specialized hardware and takes advantage of 

heterogeneous storage arrays having cheap SATA disks from multiple vendors. 

Network backbone and other hardware deployed with UIDAI data centres are 

based on open standards having multiple vendors capable of providing them at 

competitive rates.  

3.2.2.3 Use of Multiple Providers 

Another principle Aadhaar system has used across the system is to bring multiple 

providers using a common API/Standard to avoid single vendor lock-in and ensure 

heterogeneous architecture across. This is reflected at hardware level, having 

servers of different capacity from different vendors work a common unfired 

compute grid, having storage of different types from vendors, network and 

security appliances from multiple vendors, and so on. Same multi-provider concept 

is also used at software level, having multiple biometric matching engines, multiple 

local language engines, having multiple data stores, having multiple certified 

vendors providing biometric capture equipments, etc all using common APIs 

defined for each of those components. Use of a common API and having multiple 

providers allow constant performance comparison, cost comparison among 

providers, and eventually entire system of UIDAI and various departments and 

agencies benefiting from such healthy ecosystem. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 82 

3.2.3 Security and Privacy 

Security and privacy of data within Aadhaar system has been foundational and is 

clearly reflected in UIDAI’s strategy, design and its processes throughout the 

system. UIDAI has taken several measures to ensure security of resident data, 

spanning from strong end-to-end encryption of sensitive data, use of strong PKI-

2048 encryption, use of HSM (Hardware Security Module) appliances, physical 

security, access control, network security, stringent audit mechanism, 24x7 

monitoring, and measures such as data partitioning and data encryption. 

 

It is very important that all personal data (any PII) collected for the purpose of 

UIDAI be provided significant protection across UIDAI and its ecosystem. A 

National data privacy and data protection legislation will indeed help in this effort 

and UIDAI has been strongly in support of such a law. However, in the absence of 

such legislation, the UIDAI has ensured that the resident data is handled with the 

utmost care within its own and partner domains and follows some of the major 

principles of data privacy/protection recognized by countries that have already 

enacted such laws. 

 

At the strategy level, following design considerations are given: 

1. Keeping minimal data that is required to uniquely identify a person and 

to provide identity based services.  

a. The UIDAI restricts itself to the collection of the minimal amount of 

personal information (as decided by the DDSVP Committee chaired 

by Shri. N. Vittal [8]) just for the purpose of issuing a unique identity. 

b. The UIDAI does not collect or store any additional personal 

information or linking data, such as PAN number, Driver’s License 

numbers, caste, income, etc.. 

2. System is designed to allow domain specific applications and database 

to be built as a layer on top of Aadhaar by the respective owners of those 

systems. 

a. This design eliminates Aadhaar system having all domain specific 

transaction data and hence supporting data federation across 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 83 

many provider databases rather than centralization into a 

common database. 

b. Allows clear separation of duties and keeps individual databases 

specific to its purposes instead of one large monolithic all-

inclusive database. 

3. Aadhaar Authentication “only” responds with a “yes/no” answer, not 

revealing any Personal Identifiable Information (PII) [13]. Similarly, e-

KYC service works only under resident authorization through online 

Aadhaar authentication (authentication is required every time) hence 

ensuring residents are in control of their personal data. 

3.2.4 Scalability 

Aadhaar system requires providing unique identity to more than a billion people. 

With an aggressive target of reaching 600 million Aadhaars in a short span of 4 

years meant that about 1 million Aadhaars need to be generated every day. 

Processing of every enrolment requires matching 10 fingerprints, both irises, and 

demographics with every existing record in the database. Currently, with the 

Aadhaar database at 600 million, processing 1 million enrolments every day 

roughly translates to about 600 trillion biometric matches every day. On the other 

hand, authentication is expected to perform within sub-seconds even when 

authentication volume is few 100 million requests every day.  

 

All this requires entire system and supporting processes to scale to massive levels. 

Scalability comes from fundamental design and architecture of the system rather 

than an afterthought. Aadhaar system has already demonstrated the scale by 

reaching 600+ million Aadhaars, processes 1 million enrolments every day, 

manages about 4000 terabytes of data, and has deployed authentication services to 

handle 100 million authentications every day. 

3.2.4.1 Scalable Technology 

For achieving such massive scale and that too within the constraints of e-

Governance systems, it is critical that technology choices are kept simple, open, 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 84 

multi-vendor, and standards based. Following are key considerations given at 

architecture level from the beginning to ensure technology scale: 

 Horizontal scale for compute and storage – Architecture must be such 

that all components including compute and storage must scale horizontally 

to ensure that additional resources (compute, storage, etc) can be added as 

and when needed to achieve required scale. This also ensures that capital 

investments can be made only when required. 

 Data partitioning and parallel processing – For linear scaling, it is 

essential that entire system is architected to work in parallel with 

appropriate data and system partitioning. Data partitioning (or sharding) is 

integral to ensure as data and volume grow, system can continue to scale 

without having bottlenecks at data access level. Choice of appropriate data 

sources such as RDBMS, NoSQL data stores, distributed file systems, etc 

must be made to ensure there is absolutely no “single point of failure” in the 

entire system. 

 Loose coupling through open API and messaging – Whenever the logic is 

long running (taking potentially hours or days, as in the case of enrolment), 

it is critical that it is broken into small components and wired them through 

an asynchronous workflow. Such design allows each component to do its 

job fast, release resources, and handle failures at micro level. It also allows 

each of these components to be run across a cluster of machines and allow 

horizontal scaling. But, such asynchronous design requires each component 

to be designed through a published open API and loosely couple them 

through a messaging layer. Such API wrapped, black-box style approach 

also allows component level tuning and re-factoring to achieve required 

performance and scale. 

 Use of open source and commodity hardware – Keeping entire system 

completely open without use of proprietary interfaces and technologies 

allows component level modifications when faced with scaling issues. If a 

component is found not performing, instead of depending on a vendor to fix 

proprietary technology, UIDAI can go ahead modifying either existing open 

source component or use an alternate one. Since these are wired through 

APIs, local testing (for regression) is enough to ensure functionality is 

intact. Similarly, when building a very large system requiring massive 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 85 

compute and storage, use of commodity hardware (one that is cheaply 

available from several vendors) and horizontal scalability allows scaling by 

adding cheaper hardware into the cluster whenever required. 

3.2.4.2 Scalable Ecosystem 

In addition to technology at the backend, it is necessary to scale field operations 

and application adoption to ensure Aadhaar enrolments and authentication take 

off. As described in first chapter (see section ‘Ecosystem Approach’), UIDAI has 

created a large ecosystem of providers to manage the overall scale and cost of this 

entire project. UIDAI ecosystem consists of registrars, enrolment agencies, 

biometric device providers, certification agencies, training agencies, field operators 

& supervisors, authentication agencies, IT product & service providers, and 

application developers. 

 

Such multi-provider ecosystem cannot be implemented at large scale efficiently 

unless two key areas are addressed: “Technology & Process Standardization” and 

“Measurement, Monitoring, & Continuous Improvement”. UIDAI has defined 

technology, people, and process standards across the board and enabled training 

and certification agencies to train and certify to those standards to ensure entire 

ecosystem works uniformly. When working with 3rd party organizations that are 

part of ecosystem, it is essential that entire system is measured using data, 

decisions are made based on data, and monitoring and continuous improvement 

schemes are put in place. Highly granular metadata (or process data) must be 

collected throughout the system to ensure quality is measured systematically and 

feedback is given to improve any specific issues that are identified. 

3.2.5 Interoperability 

Because Aadhaar system is conceived as an ‘Identity Platform’ on which many 

applications will be built, it is critical that all 3rd party interfaces be fully 

interoperable without any affinity to platforms, programming languages, network 

technologies, and such. Such open interoperability is an absolute requirement for 

Aadhaar to be widely adopted as a national identity platform. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 86 

In addition, even within the Aadhaar application, all components must be loosely 

coupled using open interfaces (APIs) ensuring interoperability across components 

and sub-systems. This is especially critical with respect to biometric de-duplication 

engines and biometric matching engines where such specialized components are 

procured and used as plug-in-play components within the overall application. Also, 

given the fact that entire enrolment and authentication devices on the field are 

procured and managed by 3rd party agencies, it is critical that any device that is 

certified is able to interoperate with Aadhaar application seamlessly. 

3.2.6 Manageability 

Aadhaar application is expected to handle millions of enrolments leading up to a 

billion, 100’s of millions of authentications every day, a few 1000 terabytes of data 

all in a reliable and manageable way. It is inevitable that in such large scale 

compute environment, something or other fails regularly; be it a hardware failure, 

network outage, or software crashes. Assuming otherwise (that nothing fails) is 

naive and it is essential that the application architecture handles these failures 

well, be resilient to failures and have the ability to restart, and make human 

intervention minimal.  

 

The entire application must be architected in such a way that every component of 

the system is monitored in a non-intrusive fashion (without affecting the 

performance or functionality of that component) and business metrics are 

published in a near real-time fashion. This allows data centre operators to closely 

watch the application behaviour and performance through a Network Operations 

Centre (NoC) at a granular level. 

 

Application architecture should also allow specific components to be watched very 

closely through a component level debugging scheme. Such debug logging should 

be limited to specific components and for a very short time so as to enable 

engineering team to analyze any specific issue arising in production and 

troubleshoot. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 87 

3.2.7 Data Driven Decision Making 

A large multi-provider ecosystem created by UIDAI can only be managed efficiently 

by measuring process data at a high degree of granularity, creating well defined 

metrics from this process data, and creating feedback loop for these insights and 

learning to be shared back to the ecosystem for continuous improvement. When 

working with 3rd party organizations that are part of ecosystem, it is essential that 

entire system is measured using data and decisions are made completely based on 

data. Highly granular metadata (or process data) must be collected throughout the 

system to ensure quality is measured systematically and feedback is given to 

improve any specific issues that are identified. 

 

Thus the objectives for UIDAI are as below, keeping in mind the large ecosystem, 

comprising primarily of external partners and a very lean UIDAI structure: 

1. Drive decision making based on data analytics: The analytics module 

within Aadhaar system should be such that stakeholders can easily include 

data and insights in their operations on a regular basis. Processes must be 

in place to drive a feedback loop to the overall organization including 

partner ecosystem to drive continuous improvement.  

2. Empower self-improvement: The analytics function should also help 

stakeholders to improve by themselves. Tools, data and platform should be 

created to be able to help stakeholders analyze their own performance and 

operational metrics themselves. 

3.2.8 Platform Based Approach 

It is critical that a platform based approach is taken for any large scale application 

development. Building an application platform with reusable components or 

frameworks across the application suite provides a mechanism to abstract all 

necessary common features into a common layer. Open APIs designed to be used 

for internal and external purposes form the core design mechanism to ensure 

openness, multi-user ecosystem, and specific vendor/system independence. 

 

 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 89 

4 Application Architecture 

TThis chapter covers application architecture and design for each of the 

modules described in chapter 2 (“Aadhaar Application”) based on principles 

described in chapter 3 (“Architecture Principles”). Design details cover how each of 

the key components are architected, technology used within each of those, and the 

reasoning behind the design. 

4.1 Overall Architecture 

Aadhaar application is primarily written in Java™ language using open source 

components and frameworks. Application is built in tune with all the architecture 

principles described in earlier chapter.  

 

 

 

 

 

 

 

 

 

 

 

At infrastructure level, application runs on commodity multi-core blade servers 

with 8086 64-bit architecture on a 10Gbps network backplane. Entire application 

runs on 64-bit Linux OS. Most of the large scale storage is SATA, with some specific 

smaller storage having SSDs. Both compute and storage infrastructure is 

       Aadhaar system currently has already issued more than 600 million (60 

crores) Aadhaar numbers, processes 1+ million (10 lakhs) enrolments per day 

amounting to 600 trillion biometric matches every day within its system, 

deployed authentication services capable of handling 100 million (10 crores) 

authentications every day, and has over 4000 Terabytes (4 Petabytes) of data 

across UIDAI’s data centres, all using an open commodity computing 

architecture and built entirely using open source software components. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 90 

heterogeneous (having different capabilities procured at different times from 

different vendors based on RFP) and works uniformly as a compute/storage 

cluster. 

 

As described before, Aadhaar application can be divided primarily into its core 

modules – enrolment, authentication, e-KYC, and supporting modules (portals, BI, 

fraud detection, CRM, etc). Rest of the chapter describes how these modules are 

architected to meet their specific functional and non-functional needs. 

4.2 Enrolment Module 

As described earlier, at a high level, this module handles initial enrolment of 

residents into Aadhaar system, validations, biometric de-duplication, Aadhaar 

generation, printing of letters, and all subsequent lifecycle changes such as 

demographic data updates, biometric updates and other related workflows. 

 

 

 

 

 

 

 

 

4.2.1 Enrolment Client 

Enrolment client works mostly offline and has all the features necessary to capture 

resident demographic details, do local validation, local transliteration, biometric 

data capture, biometric data quality check, and capturing of necessary audit details 

such as operator biometrics, location & time. Enrolment client software also has 

built-in security features such as in-memory data encryption, encrypted data 

storage, export, etc. 

 

       Aadhaar system currently has about 30,000 enrolment stations deployed 

across the country by various registrars. Currently there are about 100,000+ 

certified operators and supervisors who are trained and certified to operate 

the enrolment station. On an average, each station enrols about 50 people per 

day amounting to 1 million enrolments per day on the field. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 91 

The enrolment client is implemented as a desktop application with a rich user 

interface and deployed to a large number of computers on the field (enrolment 

stations). It works on Windows and Linux laptops and can connect any of the 

certified biometric sensors, standard scanners, and printers via Aadhaar Biometric 

Capture Devices Interface Specifications [19]. Enrolment agencies use this 

Enrolment Client software to enrol residents into the system on the field and 

upload data onto the server as a batch. 

  

Following sections cover logical and physical implementation of various 

components within enrolment client so as to meet all business requirements. 

4.2.1.1 Client Architecture and Implementation 

Diagram below represents the logical component diagram for enrolment client.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Enrolment Client Component Diagram 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 92 

 

Entire client is written in Java and single client code base is certified on both 

Windows and Linux stack. Although most agencies use Windows laptops, a few 

states such as Kerala use Ubuntu Linux based laptops. UIDAI ensures that single 

client version runs on multiple OS platforms. In terms of design, each of these 

components conforms to a well defined interface that serves as the contract for 

collaboration between other components within the client. 

4.2.1.2 Storage Layer 

The storage layer comprises of multiple, logically distinct, data stores implemented 

using a combination of relational database tables and local file-system entities. In 

order to reduce the overheads during application setup and maintenance, the 

relational database must be an in-process database. This means that the database 

must exist within the memory space of the enrolment client and not as a separate 

process or service.  

 

In the interest of security, the resident’s profile is maintained as in-memory objects 

during the life-cycle of an enrolment session. This includes all demographics, 

biometrics, user credentials (standard data types and biometrics) and audit 

information associated with the resident’s profile. These in-memory objects are 

also protected via HMAC values to ensure no unwanted alterations/tampering are 

done while in-memory and integrity is maintained. 

 

Once the enrolment session is complete for a resident, the whole in-memory object 

tree is checked for integrity and saved as encrypted enrolment packet. Each 

enrolment packet is encrypted using a 2048-bit asymmetric key and written to a 

single file on the local file system. The internal format of the enrolment packet is 

identical to the import format expected by CIDR. This is necessary since the 

encrypted enrolment packet, once created, cannot be opened on the client side or 

during transit for further modifications. During export to CIDR, each enrolment 

packet is moved to the removable media using opaque file operations without 

further interpretation and re-packaging of file contents. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 93 

4.2.1.3 Domain Layer 

The domain layer incorporates logic that pertains to capture of residents’ profiles 

and the storage, retrieval and cleanup of such information against persistent 

storage. Elements of the domain layer are not reusable across business scenarios. 

There are also no visual considerations (with respect to application behaviour at 

user interfaces) that go into the design of this layer. 

 

Pre-Enrolment Data Management 

This module works in conjunction with suitable presentation drivers and other 

helper entities (e.g. CSV reader, HTTP reader) to import pre-enrolment data. Once 

loaded, this data cannot be modified on the enrolment client. Basic validations are 

performed at the time of addition to ensure type consistency, check for junk data, 

removal of duplicate entries, etc. 

 

Management of Region Code Data, Credentials, and FI Data 

This module helps to import master data information into relational database 

tables. Once loaded, this data cannot be modified on the enrolment client. Basic 

validations are performed at the time of addition to ensure type consistency, check 

for junk data, removal of duplicates, etc. The module allows search and retrieve 

operations to be performed on previously loaded region code data based on 

defined parameters (e.g. Postal pincode, district code, etc). 

 

Enrolment Component 

This component provides behind-the-scenes capabilities to securely store resident 

profile information including both demographic and biometric data. A unique 

enrolment ID is generated for each resident profile stored. The profile information 

is distributed across file system storage and application database as described in 

storage section above. Note that the enrolment module does not directly interact 

with any of the biometric devices attached to the enrolment client. This glue 

(control and data flow) is provided by corresponding presentation driver entities. 

 

Enrolment Data Export 

This module provides the necessary capabilities to export encrypted enrolment 

packets (maintained by the enrolment module) into removable media for physical 

transfer and upload to CIDR. The export process comprise largely of opaque file-



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 94 

level operations (copy, move, delete) with additional data transformations into 

alternate packet structures. 

 

Enrolment Client Data Cleanup 

The enrolment client data cleanup module is responsible for removal of resident’s 

profile from the enrolment client databases subsequent to export and receipt of 

the corresponding data by CIDR. This module makes use of the CIDR Smart Sync 

API component of the infrastructure layer for communication and data exchange 

with the CIDR. 

4.2.1.4 Infrastructure Components 

Infrastructure components are entities incorporating common features that are 

reused across multiple domain layer entities and presentation drivers. These also 

include components that allow integration with external devices (e.g. biometric 

devices) and backend systems (e.g. CIDR). 

 

Biometrics Client API 

The Biometrics Client API reduces all interactions with the biometrics layer to the 

following high-level procedures, data objects and callback interfaces: 

 Method to ping the Device Manager at intervals defined in Device manager’s 

Connect response. 

 Register a callback interface to receive notifications on device availability 

and auto capture of biometric samples. 

 Method to request for video stream capture on any device. 

 Method to query device capabilities and capture biometric samples. 

 

All other entities across logical layers within the enrolment client interact with the 

biometrics layer only through this client API conforming to and implements the 

client-side specifications for the Aadhaar Biometrics Capture Device API [19]. Note 

that the UIDAI biometrics capture API itself provides a common abstraction for 

interacting with any biometric device independent of the solution provider and 

type of data captured. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 95 

QSS API 

The QSS API (biometric quality check) reduces all interactions with a third-party 

QSS library to the following high-level procedures and data objects: 

 Given a biometric data in standard image formats, retrieve a list of quality 

parameters along with scores and feedback to improve overall quality. 

 Given a biometric data in standard image formats, segment the image into 

relevant portions (as rectangular co-ordinates) with qualitative information 

on each segment. 

 Given a biometric data in standard image formats, retrieve information 

about the left or right sidedness of the image. 

 

Transliteration API 

The transliteration API defines a standard service provider interface that must be 

implemented by any external solution capable of providing transliteration 

between English and the officially recognized Indian languages. It is primarily used 

by the transliteration widget of the view layer to provide side-by-side view and 

capture of resident’s profile in both English and a local language of choice.  

 

From a functional perspective, the transliteration API requires the following 

capabilities of any implementing service provider: 

 Ability to configure the transliteration engine to output in a target Indian 

language using data dictionaries, language models, etc. 

 Given a text string in English, convert the same into a Unicode text 

corresponding to the Indian language specified. 

 Given a text in English, provide a list of transliterated texts in the target 

Indian language. This list can be used to select an alternative transliterated 

text, in case where the default transliteration is not appropriate. The list is 

sorted based on an internal scoring system for relevance and accuracy. 

 Reverse transliteration from a local language to English. This includes 

providing the best match as well as a list of possible alternatives. The list of 

alternatives is sorted based on an internal scoring system for relevance and 

accuracy. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 96 

 Edit distance algorithms to validate pre-filled local language fields (e.g. from 

pre-enrolment data) against transliterated alternatives. 

 Provide an on-screen keyboard that allows typing and character-by-

character correction of the transliterated text. 

 

GPS Client API 

The GPS Client API is used to interface with an attached GPS device to capture the 

approximate geographical co-ordinates of enrolment operations. This GPS 

information is associated with additional mapping between an enrolment drive 

and a geographical location and used to perform business analytics. 

 

Auto-Suggest Dictionary 

This key-value dictionary component is used to provide auto-suggest capabilities 

for frequently used fields on the demographics capture form of the enrolment 

client. Note that this component in itself does not appear anywhere on user 

interface screens but are used within the auto suggest fields of the view layer. 

Specific capabilities of this component are as follows: 

1. Maintain a dictionary of frequently used terms on a per-field basis. The data 

in this dictionary is not-preloaded but derived from previously entered 

values in the corresponding field. 

2. Data in the dictionary is temporary in nature and should be cleaned up on a 

periodic basis. This should be a manual operation to be performed using 

suitable configuration screens. 

3. The dictionary should have a maximum size with respect to the number of 

terms stored and follow a ‘most recently used’ (MRU) policy to retain 

frequently used terms. 

4. Each term must have an associated weight that determines its position 

within the list of auto-suggest options. This weight is ascertained based on 

the number of times the term has been entered previously. 

5. The dictionary is maintained for text in both English and local languages. 

For local language fields, auto-suggest values from the name dictionary and 

from the transliteration API must be combined and visually displayed in 

one drop-down. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 97 

 

Smart Sync and other Client to CIDR APIs 

The Client Sync API (Smart Sync) is used by the enrolment client to communicate 

with the CIDR as and when the client application comes online within mandated 

sync frequency. This API is primarily used to cleanup exported resident’s profiles 

that are still residing with the client application. A subset of this protocol is the 

enrolment station registration API that is used to register the machine with the 

server as part of the post-installation station configuration activities. 

 

Online communication between enrolment client and CIDR takes place over HTTP 

and accesses remote services that expose a REST interface. SSL is used as the 

transport layer encryption mechanism. The POST method of HTTP is used to 

transmit data from the client end. For communication pertaining to client 

registration, an XML document containing unique machine identifier, enrolment 

agency code and station number is used as the body of the POST message. In case 

of successful registration, the CIDR should respond with a set of security tokens to 

establish trust relationships for all future client-server data exchange. 

  

In addition, smart sync has the mechanism to enforce rules from the server such as 

force upgrade of client versions, when maximum allowed un-exported packet 

count is reached, lock it until data is exported, remove black-listed operators from 

credential data, etc. 

 

Print Framework 

This module provides support for print-related capabilities for all modules across 

all layers within the enrolment client. Printing in both English and local languages 

are supported. 

 

The on-paper layout of printed content is template based: a separate template 

exists for each type of print operation (e.g. print receipt after successful 

enrolment). These templates form a part of the application executable. Changes to 

the template contents are centrally distributed as incremental updates and 

incorporated into the application via the automatic update process. 

 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 98 

Client Security 

This module deals primarily with certificates and key management to encrypt the 

enrolment packets that are exported. Key management makes use of PKI 

technologies with two sets of public keys being maintained for data exchange with 

CIDR and registrars respectively. CIDR packets are secured by encrypting them 

using a 2048-bit UIDAI public key. Each such public key is made available in the 

format of a valid X509 certificate. The validity of these certificates is separately 

checked on the client-side prior to extraction of the corresponding public key. 

 

During packet encryption, a single public key is randomly selected from a set of 

valid public keys. The corresponding key store is embedded into the enrolment 

client and forms a part of the application runtime binaries. 

 

Note that no private key is ever stored or maintained in the client. Client only has 

the ability to encrypt the resident data and has no mechanism to decrypt until the 

packet is securely transported to within UIDAI’s data centre. 

 

Auditing and Logging 

This module is used to maintain a runtime log of the enrolment client for 

subsequent debugging purposes in case of application crash or poor performance. 

Audit information, pertaining to application usage, is also maintained separately. 

Some of this audit information is exported as part of enrolment packets. The 

purpose of the audit information is to perform on field usage analytics. 

 

Aadhaar system implements data-driven analytics and continuous improvement of 

its processes. To enable this for the enrolment process, UIDAI has built-in several 

features within the enrolment client providing metadata related to the enrolment. 

For example, every enrolment packet is reviewed by a supervisor for data quality 

(review audits are captured electronically) and signed as required which means 

every enrolment is traceable in terms of “who”, “when”, “where”, “under which 

agency”, “under which registrar”, “who reviewed it”, etc. In addition, several 

metadata elements such as “how long operator spent on demographic data screen”, 

“how many times a fingerprint was captured”, “how many corrections were done”, 

etc. are collected as part of every enrolment packet for analysis of operator actions 

and performance. This data is used for providing continuous improvement 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 99 

feedback on data quality to the registrars and enrolling agencies using UIDAI’s 

business intelligence platform. Audit module captures all these data including 

screen transitions, crash reports, number of times it restarted, etc and added to 

audit metadata which is then sent to CIDR and fed into analytics sub-system. 

 

Local Biometric Verification (LVS) API 

This module simplifies integrations with the third party services used for local 

biometric verification of operators, supervisors or introducers. The local 

verification service also wraps the interaction with the server in order to verify a 

user. LVS uses “Aadhaar Authentication” to “on-board” operators and supervisors 

within its DB so that local offline verification can be done after on-boarding 

whenever required. 

4.2.1.5 Views and Presentation 

The View Layer comprise of visual elements that together constitute the end-user 

interfaces of the enrolment client. Most of the visual elements (e.g. text fields, radio 

buttons, tables and buttons to name a few) are standard in nature and supported 

by most windowing toolkits such as Java Swing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7: Enrolment Client Screenshot 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 100 

 

The following are a few custom widgets that are specifically required to address 

the user experience requirements of the enrolment client. 

 

Transliteration Widget 

The transliteration widget makes use of the Transliteration API to provide a side-

by-side view of text data in English and in a local language of choice. It also provide 

local language keyboard, suggestions, etc. Screenshot of the keyboard is given 

below. 

 

 

 

 

 

 

 

 

 

 

 

Capture Player 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9: Biometric Capture Screenshot 

Figure 8: Local Language Keyboard 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 101 

Above widget is a lightweight video player to render frames obtained from any 

biometric device. Dynamic feedback received from the device (e.g. ‘move the 

finger’ ‘press harder’, etc.) is shown on the video rendered. Dynamic quality of 

biometric sample is displayed alongside the video display area. 

4.2.1.6 List of Technologies Used 

Technology Intended Usage 

Java Standard Edition 6.x Programming language and runtime environment. 

Apache Derby 10.5.x Embedded relational database to host client-side data (master and 
process data). Encrypted resident data including biometrics is NOT 
stored here. 

Apache iBatis 2.3.x Lightweight relational data persistence framework to move client 
data between relational database tables and in-memory objects. 

Spring Framework 2.x Dependency injection framework to integrate with each other the 
entities within different layers of the enrolment client.  

Java Swing Framework Windowing toolkit that is used to create the enrolment client user 
interface screens. 

Aadhaar Biometric Capture API 
compliant VDMs 

Vendor Device Manager (VDM) that is compliant to Aadhaar 
Biometric Capture API is provided by specific biometric device 
vendor. These are certified by STQC for quality and compliance. 

Cognirel’s and CDAC 
Transliteration and Matching 
Library 

Transliteration engines based on Aadhaar Transliteration API. Any 
engine compliant to the API can be used as a plu-n-play engine and 
configured for one or many languages. 

4.2.2 Enrolment Server 

Enrolment server module handles all the functionality necessary to manage 

enrolment packets, validate them, do necessary quality checks, and most 

importantly orchestrate biometric de-duplication to ensure uniqueness before 

assigning a unique identifier to the residents.  

4.2.2.1 General Architecture Strategies Used 

The enrolment server solution architecture follows certain architecture principles 

and strategies that have been adopted considering the architecture goals and 

constraints of the system. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 102 

Stateless nature of Aadhaar generation flow stages 

Stateless nature of application components helps in addressing scalability and 

availability needs of the architecture. All stages of the Aadhaar generation flow are 

designed to be stateless and message driven in a request-response model i.e. each 

stage is given complete data that it requires for execution. The stages follow the 

“Command” design pattern. Each stage is autonomous and connected to the next 

one by the infrastructure and not hard-wired in code. This approach to software 

design that decomposes a complex, event-driven application into a set of stages 

connected by queues is based on the “Staged Event Driven Architecture” (SEDA). 

 

All stages in the flow are designed and implemented as Plain Old Java Objects 

(POJO’s). This approach serves purposes of independent testing of each flow stage 

and removes many dependencies on the execution runtime. Each stage can be 

instantiated and messages passed to it using method constructs of the POJO during 

unit testing and thereby even decimate need for queues that link stages together. 

 

Re-submission of data within stages 

The Aadhaar generation flow stages are multiple in numbers and involve execution 

of many tasks. This spans OS processes, machines, and module boundaries. It is 

therefore quite likely that some of the execution stages might become unavailable 

due to machine failures or software exceptions. Failures may also occur due to 

large and sustained loads on the system. 

 

The architecture takes this possibility into consideration and follows the design 

strategy of permitting re-submission to all stages in the flow. This approach 

permits stages to fail fast and resume execution when recovered. Re-submission 

strategies normally adopt a check-pointing approach where each stage saves 

required state into a data-store which is then to resume execution when recovery 

happens. The Aadhaar generation flow uses an RDBMS schema as the persistent 

store for check-point data. The first stage in the Aadhaar generation flow initiates 

the check-point record for the flow and subsequent stages update this data as the 

flow progresses. A sweeper job scans the check-point database for stale and 

zombie records and resubmits them to the next stage of the flow i.e. the stage 

succeeding the last one that was successfully completed and check-pointed. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 103 

Definition of vendor neutral API for integration with COTS solutions 

Aadhaar generation process is dependent on third-party and often COTS products 

for realization of certain stages in the flow. Aadhaar enrolment server follows a 

multi-vendor strategy (as articulated in architecture principles) for servicing such 

needs. However, not all interfaces have industry standards and standard APIs for 

integration. The architecture therefore follows the following strategies for such 

integration needs: 

 Use of messaging middleware as the integration channel – Asynchronous 

messaging and use of message correlation identifiers enables loose coupling 

with the vendor solution and isolates the stages from the actual deployment 

and implementation of the required task. This approach also helps tune 

queue depths and consumption rates depending on the throughput 

available from the vendor solution deployment. 

 Use standardized API published by UIDAI that will be supported by all 

participating vendors – Messages passed to the vendor solutions follow an 

XML structure as standardized by UIDAI in consultation with the vendors. 

The API is standardized and published as XML schemas (XSD) that are then 

implemented by the various vendors over the messaging middleware 

transport interface. 

 

Location and network agnostic execution 

The approach of connecting stages using message queues has another benefit – 

that of using location agnostic message queues that can span data centres. A 

geographically scaled out deployment of such nature helps in disaster recovery 

and load distribution across the entire logical cluster of machines. Location 

unaware execution requires stateless behaviour as mentioned above. The 

messaging middleware supports routing tables that are shared across the entire 

cluster, and delivery of messages published at one node to a queue residing at 

another node is seamless. 

 

Solution design to handle failure of Nodes, Processes and Storage disks 

The deployment infrastructure for the enrolment server components is expected 

to grow up to hundreds of nodes. Given the high loads on the infrastructure, it is 

but natural for nodes and processes to fail. Solution strategies like stateless nature 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 104 

of generation flow stages, re-submission of stages and location and network 

agnostic execution defined above ensure that the system is functional in the event 

of large scale infrastructural failures.  

 

However, it is imperative that failed instances recover, are restarted at the earliest 

so as to resume processing of the flow stages. Recovery requires the messaging 

infrastructure to either support discovery of nodes or for nodes to join logical 

topologies and named clusters. 

  

In addition, the architecture also needs to address data storage needs. During peak 

enrolment, the system receives 1 million enrolment packets in a single day. The 

large size of each resident’s enrolment data adds up roughly to 30 TB of I/O for a 

whole day’s load. The nature and structure of large volume of encrypted binary 

files indicates need for alternative stores to the RDBMS. A DFS (Distributed File 

System) such as Hadoop that works with commodity grade storage disks is a viable 

option in spite of the network latency involved in data block distribution across the 

disks and the cost of maintaining and running a file system over and above the 

operating system’s file system. The DFS deals with the issue of potential storage 

disk crashes and failures by maintaining multiple copies of data blocks. In the DFS, 

each file is broken into multiple data blocks which are then distributed across 

storage disks – often in multiple copies. 

 

Loose coupling of integration interfaces 

Integration interfaces are isolated using messaging middleware where possible as 

described in the solution strategies above. However not all interfaces fit into the 

middleware based asynchronous integration pattern. An example is the callback 

from biometric de-dup servers for enrolment packet data i.e. API request for 

reading the biometric data packet for the reference number submitted for de-dup 

and insert into the vendor solution’s gallery. Interfaces of this nature follow a 

synchronous pattern as opposed to asynchronous model typical of messaging. 

HTTP based implementations are used for such interfaces as opposed to providing 

Java API that runs inside the vendor solution’s process space. This approach, while 

adding IPC overhead, provides process separation, cleaner separation of 

responsibilities and better management of code changes to vendor solution vis-à-

vis the interface. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 105 

4.2.2.2 Enrolment Server Logical View 

Aadhaar enrolment server components are highly scalable to handle million+ 

enrolments every day and is built to manage data stores in 1000’s of terabytes. 

Entire enrolment workflow is broken up into many logical stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High level flow across the various components within enrolment server is as 

follows: 

 Enrolment data packets are collected from the various Aadhaar enrolment 

clients and uploaded by authorized personnel to designated folders in the 

DMZ through the Upload Client software provided by UIDAI. These are 

scanned for viruses before making it available for subsequent processing. 

Figure 10: Enrolment Server Logical View 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 106 

 A file picker batch job periodically scans the DMZ and queues the URIs of 

enrolment packets to a load balanced set of dedicated queues. 

 Multiple SEDA nodes that run the enrolment processing flow stages are 

deployed to process incoming enrolment packet URIs. The first stage of the 

flow is registered as a listener to the enrolment queues and therefore picks 

up the file URIs. This stage inserts enrolment and its metadata to the 

following data stores: 

o A record into the enrolment packet processing status RDBMS for the 

URI being processed.  

o A record into the demographics and photo tables in RDBMS which 

acts as a cache for subsequent stages of the SEDA. 

o A copy of the entire encrypted enrolment packet into the archival 

system and a copy to DFS which acts as file cache. The packet is then 

deleted from the DMZ. While archiving checksum of the file is 

computed and verified to ensure entire encrypted enrolment packet 

file is moved in full. 

 The various stages in the SEDA flow listen to designated queues for 

incoming messages that trigger and provide data for stage processing. Each 

stage is implemented as a POJO and may in turn define a set of tasks to be 

executed to complete the stage. The tasks are dispatched to the compute 

grid and execute there. 

 Integration with the multi-ABIS de-dup servers is via the ABIS middleware. 

The ABIS middleware is a SEDA node that has a couple of queues – one 

outbound and another inbound. All messages have a unique reference 

number populated by the Enrolment server which is replayed back in the 

response by the biometric server. The reference numbers are used for 

message correlation. De-dup (Identify) and add-to-gallery (Insert) requests 

containing the reference numbers are queued to the biometric server queue 

by the ABIS middleware which has policies for routing and response 

handling. On receipt of the enrolment message, the biometric server makes 

a call to an HTTP service hosted by the Enrolment system for retrieving 

biometric content from within enrolment packet identified by the reference 

number in CBEFF format. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 107 

 The biometric server sends a response message with status indicator for 

the request i.e. de-dup or add-to-gallery. The SEDA stage receiving the 

biometric server response routes the message to Aadhaar number 

generation stage. Error or manual verification flows are handled by 

separate stages and using an exception handling workflow.  

 The Aadhaar number generation stage interfaces with a queue containing 

generated Aadhaar numbers and picks the first available number. 

 The generated Aadhaar number is then linked to the enrolment record 

identifier and inserted into Aadhaar (UID) master (a 100-way sharded 

RDBMS store).  

 Processing then moves to the next stage of letter printing. In this stage the 

letter is marked for printing. Actual letter generation is done by a scheduled 

batch job. 

 Persistence of operational data like enrolment status records, demographic 

information of resident and audit records are initiated via the flow 

framework. Data may be stored in either of RDBMS, document database, 

columnar database or DFS depending on the persistence strategy for 

respective data model. 

 The architecture also supports an Event framework that allows stages and 

its constituent implementation classes to publish events relevant to the 

processing stage and the data being processed. In asynchronous event 

consumption, event data is published to messaging server topics for 

distribution to subscribers. The BI sub-system is one such subscriber of 

enrolment server events. 

 

The enrolment process is automated from receipt of enrolment packet leading to 

letter printing post Aadhaar number generation. However manual intervention is 

needed in stages that are integration points with third-party solutions. One such 

example is the Manual Adjudication after biometric de-dup stage where candidate 

duplicates may be returned from the biometric servers requiring manual 

intervention for de-dup. This requirement indicates the following solution needs: 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 108 

 Aadhaar generation flow must support re-submits to any of the stages. Each 

stage must therefore write checkpoint data that may be read, tracked or 

used otherwise. 

 Ability to determine the count and reference numbers of enrolment packets 

being processed in each stage. This information may then be used for 

manual intervention. 

 Ability to pause execution of the Aadhaar generation flow to permit 

administrative intervention. 

 Ability to collect exception and failed enrolment data from the respective 

stage in the Aadhaar generation process which may then be presented for 

manual analysis and action 

 

Each stage in the enrolment process generates useful information that may be used 

in Business Intelligence (BI) – for e.g. quality and response time information for 

de-dup requests from the various biometric vendor solutions. This requirement 

indicates the following solution needs: 

 Provide an event framework that enables various stages to easily publish 

defined events with relevant event data.  

 Isolate event publishers from event consumers to enable easy 

administration of different types and instances of event consumers. 

 Define destination end-points for each event type using URIs that may be 

used to connect event consumers with publishers. 

 Select a suitable transport for delivering events that is location agnostic and 

can preferably work across data centre networks. 

 

The Aadhaar BI sub-system and the audit framework are two primary consumers 

of events published from the enrolment flow. Aadhaar enrolment server 

architecture provides the required data needed by these sub-systems using the 

event framework. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 109 

4.2.3 Enrolment Biometric Subsystem 

Aadhaar system deploys 3 independent ABIS solutions adhering to common ABIS 

API [12] for multi-modal biometric de-duplication. Enrolment server needs to 

therefore integrate with these solutions using the ABIS API and allocate de-

duplication requests as per UIDAI policy of dynamic allocation (which uses on-

going accuracy and performance data to decide which solution gets maximum de-

duplication requests). 

 

Architectural requirements of multi-ABIS solution are as follows: 

 Define integration channel that is generic enough to be supported by 

multiple solutions and have detailed configurability in defining allocation 

policies. 

 Ability to make optimal read-write of enrolment packet data over the 

network and across processes considering large data volume of the 

enrolment packets (3-5MB per resident having a volume of 1+ million 

enrolments per day). 

 Suitable isolation of integration components into processes and nodes – 

maintain clear interfaces and implementation responsibility between 

Enrolment server and vendor provided ABIS solution servers.  

 Design solution to handle non-uniform success-failure ratios among 

biometric server solutions during API invocation. 

 Collect performance metrics for each biometric server solution and publish 

the same for analysis for continuous accuracy and performance metrics 

calculation. 

 

The ABIS Middleware is implemented as a separate SEDA node and is therefore 

independent of the enrolment server’s SEDA node. The ABIS middleware at its core 

implements behaviour for request-response tracking, handling retries and routing 

behaviour based on dynamic allocation policies of UIDAI that may be administered 

on demand. ABIS middleware uses RDBMS to track requests and responses from 

multiple ABIS providers and orchestrates the de-duplication activity. Once all ABIS 

solutions have responded, middleware responds with one message back to 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 110 

enrolment SEDA process which continues to either Aadhaar allocation stage or 

reject handling stage. In the case of rejection of a de-duplication request by one of 

the ABIS providers, middleware sends the same to other ABIS providers for re-

confirmation. If more than one ABIS provider rejects the enrolment as duplicate 

with high degree of confidence, it is automatically rejected. Otherwise, it is sent to 

manual adjudication workflow where a semi-automated process handles this small 

number of adjudication requests. 

 

Following diagram depicts the multi-ABIS architecture with ABIS middleware 

orchestrating the insert/identify flows between 3 different ABIS solutions as per 

UIDAI dynamic allocation policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The messaging queues used in this integration are persistent i.e. messages are 

persisted in order to permit guaranteed delivery even in case of machine failures. 

Message delivery to the biometric servers requires guarantee as the ability of the 

Figure 11: Multi-ABIS De-Duplication 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 111 

biometric server to handle duplicate add-to-gallery requests might vary between 

vendor solutions.  

 

All read-writes to the DFS are performed by the enrolment server components. 

The biometric servers receive only a reference number for the enrolment packet 

that must be de-duped or added to the gallery. The message to the biometric 

server also contains an HTTP URL that needs to be de-referenced by invoking an 

HTTP service which implements reading of enrolment packets for requested 

reference numbers. This HTTP service provides clear separation of responsibilities 

between the enrolment server and the vendor biometric de-dup solutions.  

4.2.4 Aadhaar Number Generation and Allocation 

Aadhaar number follows a well defined format and size as defined by UIDAI [10]. 

Multiple number generation options exist for implementing this module. Number 

generation module is independent of the rest of the application and is integrated 

via a messaging queue where pre-generated Aadhaar numbers are available for the 

SEDA flow stage to consume on demand. Benefits of this design are: 

 12-digit Aadhaar number (11 digit random number plus a Verhoeff 

checksum digit) generation throughput is independent of the enrolment 

packet arrival rate. Random numbers may be generated well in advance 

instead of on-demand if the implementation is considerably slow. 

 Message queue provides a level of isolation between the number generator 

and the consumer. This allows the generator to be replaced when required. 

 

Number generation uses a pseudo-random number generation scheme (PRNG) 

with high degree of randomness and generates random numbers derived from a 

number space of 100 billion (11 digits). As per number generation scheme, UIDAI 

filters numbers starting from 0 and 1 (kept for future expansion) making the 

number space to 80 billion. In addition, specific number patterns are eliminated as 

per UIDAI policy. Filtered patterns include repeating numbers (more than 4 digits), 

simple sequence numbers, numbers with special sequences (such as ‘666’), reverse 

sequences, repeating blocks of 4, etc. Number generator uses a series of configured 

filters to ensure Aadhaar numbers follow all defined policies.  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 112 

 

Note that PRNG algorithm does not guarantee uniqueness across all Aadhaar 

numbers generated across many months and years. Hence it is important to ensure 

uniqueness explicitly. Generator component uses an embedded Java database to 

store and check number uniqueness before pushing the number to the queue 

where all generated numbers are stored and consumed from. Even with this, to 

ensure any failure resilience, when finally inserting the Aadhaar number to 

Aadhaar (UID) Master database, uniqueness is enforced via database unique index. 

But, this optimistic scheme makes sure 99+% of time, there is no failure. In case of 

any last minute failure, that number is simply discarded and another number from 

the queue is picked up and used. In practice, number generator Java Spring batch 

program is executed in regular intervals (every few days) and generates about 30-

40 million at a time and pushes into the queue for enrolment module to consume. 

4.2.5 Enrolment Packet Archival 

Once Aadhaar number is allocated, Aadhaar master entry is created, and biometric 

templates (for authentication) are extracted, there is no real need for accessing the 

raw encrypted enrolment packet file. 

 

Design and architecture needs to cater primarily to handle: 

 Scalability – System should be able to handle more than 4 billion files 

(enrolments, corrections, lifecycle updates, and future enrolments for next 

50+ years) each of size 3 to 5 MB. This means archive system should handle 

about 10000 to 15000 TB raw data. Considering the requirement of high 

availability (HA) and no data loss, 2 copies of data needs to be on disk 

across geographically separate data centres and 2 copies on tapes (20000 to 

30000 TB on disk and same on tape). This storage should allow random 

access to individual packets based on a unique file ID. This system should be 

able to support easy replication (across data centres) and file backup. 

 Security – Packets should always be encrypted on disk. Decryption (PKI-

2048 and AES-256) is done only by authorized applications using a 

Hardware Security Module (HSM) network appliance which is protected. 

System administration should not have any mechanism to reverse engineer 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 113 

and deduce packet details by looking at the physical files/data on disk. 

Access to the system should be easily controlled via standard ACLs. From a 

network access perspective, entire archive sub-system should be not 

accessible directly and access to individual files should be controlled and 

audited. 

 

Aadhaar application uses a concept of unique alias, called RefID, for all enrolments 

and update requests which ties (links) various partitioned database and files 

within file system. RefID is a 128-bit UUID generated for every packet, represented 

as Hex format [20] [21]. Encrypted enrolment packets are stored as files with UUID 

as the file name. This ensures that administrators who have access to file system 

for backup and other activities do not have any knowledge from the file name and 

is completely anonymized and since it is PKI encrypted, has no access to file 

content either. 

 

Archive module uses XFS file system to store these encrypted files in directory 

structure based on the UUID as the hash bucket. First two levels of the directories 

are using the first 4 hex characters and hence the directories are uniformly filled. 

All mount points are 2 TB LUNs coming off SAN boxes which can hold roughly 

500,000 to 600,000 files considering each file is about 3 to 5MB in size. At any 

instant of time, many 2TB LUNs can be “active” where files are archived in round-

robin fashion and when these LUNs get full, application moves onto set of active 

ones. Full LUNs are then made read-only. Archival batch program keeps track of 

UUID to LUN mapping through an RDBMS table. Every rack server running archive 

module roughly holds about 128 such LUNs mounted through fibre channel. 

Currently Aadhaar application uses about 15 such archive servers to store all such 

files. These archive files are also replicated to similar setup across the data centre 

and also backed up in each data centre, making totally 4 copies within the system.  

 

Application access to archival system is via an HTTP server (Tomcat) running on 

all archive nodes. These “archive readers” serve specific files given the UUID and if 

not found, it generates a specific event and provide a specific error code and 

application can retry after configured number hours. This specific event can be 

listened by automated provisioning system and on-demand provide access to 

mount point. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 114 

 

Following architecture diagram depicts the archival system as described above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.6 Print & Partner Integration 

As 1+ million enrolments are processed every day, print letter job is also expected 

to scale up fast. With various language wise printing capabilities, it is essential that 

a highly configurable, multi-threaded, parallelizable job is created to handle the 

volume. 

 

Print job scans the SEDA enrolment records database to identify records that are 

ready for letter printing. Then it invokes the Common Search API (CSAPI) 

internally to retrieve resident data from Aadhaar (UID) Master to generate XML 

files of suitable format. XML data contains resident demographic data, photograph 

and a 2D bar-code containing a subset of the demographics details. This batch job 

uses the common batch framework of the underlying technology platform. This 

batch depends upon the data available for print and is triggered based on the 

CRON timing configuration available in application properties file. 

 

Figure 12: Enrolment Packet Archival Architecture 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 115 

Once, the print letter xml is generated then, the letter status type of the enrolment 

record will be changed to ‘Letter Generated’ and entry will be inserted into 

tracking table for postal tracking. 

 

All UIDAI interfaces with external partners including print/logistics partners are 

digitally signed to provide non-repudiation and encrypted using partner public 

key. Partners must decrypt the file using their private key. Digital signature of 

UIDAI can be verified using the public key of UIDAI to ensure integrity of data. 

4.2.6.1 E-Aadhaar Service 

E-Aadhaar service, exposed via resident portal, is built as an online web 

application backed with authentication and data retrieval APIs within the CIDR. It 

is deployed as a web application with HTML/JavaScript user interface. E-Aadhaar 

application in turn invokes two key internal APIs – one for OTP authentication and 

verification and second for demographic data retrieval. Both are internal APIs 

secured behind the firewall which abstracts OTP service and resident data 

retrieval service. 

 

Although the service is accessible to public, it is secured through mandatory 28 

digit EID (up to seconds field of timestamp), postal pincode of enrolment, full name 

as in enrolment, and a mobile number where OTP is sent before e-Aadhaar can be 

accessed. E-Aadhaar audits every request including IP address, mobile number 

where OTP is sent, and watches metrics such as number of times a particular EID 

was requested, number of requests originated from same IP, number of requests 

for which same mobile number was used for OTP delivery, etc. to track any 

abnormal patterns. 

4.2.7 Aadhaar Update Services 

UIDAI allows data update (demographics and biometrics updates) to Aadhaar 

holders post initial enrolment based on its update policy [22]. Update services are 

integral part of enrolment server. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 116 

For permanent physical update centre operations, UIDAI provides update 

software, integrated to enrolment client, which is an offline Java application. 

Registrars using enrolment agencies use this software quite like enrolment client. 

All security features, process monitoring features, data management features, and 

sync features are also available within update client.  

 

UIDAI also offers Self Service Update Portal (SSUP) for demographic data updates. 

This module (SSUP) is a web application hosted within CIDR and exposed via 

Internet to residents. Update portal ONLY allows residents with registered mobile 

number to access the system using One-Time-Pin (OTP) authentication. In either of 

these cases, an encrypted, digitally signed update packet is created which, in turn, 

is picked up by SEDA flow for update/correction processing. 

 

From an architecture perspective, update flow is very similar to enrolment based 

on various business rules of update [22] laid out by UIDAI except for some 

fundamental differences: 

1. Update request is always authenticated to ensure only the resident (or 

guardian in case of children) can update his/her record. This is to ensure 

subsequent Aadhaar lifecycle updates are carefully protected from any 

invalid or unauthenticated updates happening to resident record. 

2. Only exception to above rule is in the case of biometric update (first time) 

once the child with Aadhaar number turns 5 years. In that case, a full 

biometric de-duplication is done and in the case that Aadhaar (since the 

child before 5 years old was provided Aadhaar number on the basis of 

demographics alone) is found duplicate, that number is cancelled (through 

a separate cancellation flow). 

3. Since Aadhaar number (or EID in the case of correction) is always available 

as part of update request, no biometric de-duplication is done. Instead, only 

biometric/OTP authentication is performed. 

 

The update packet processing follows the SEDA architecture of enrolment server. 

Most of the processing flow is same as that of a new enrolment processing. There 

are additional validations performed for update/correction packets as compared 

to new enrolment processing. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 117 

 In case of Demographic update/correction, the packets are sent for 

resident’s biometric verification (authentication) instead of de-duplication.  

 In case of Biometric update the packets are sent to ABIS middleware for 

inserting the changed biometric to ABIS solution databases after biometric 

verification (authentication) of the resident. 

 In case of a biometric update for an infant at the age of 5, new biometrics 

are inserted to biometrics servers and a full biometric de-duplication is 

performed with the biometrics servers to eliminate any duplicates. 

All other validations (structural validations, metadata validations, rules 

validations, etc), exception workflows, and resubmissions (in the case of long 

failures or holds which are time bound) are handled quite like normal enrolment. 

4.2.8 Information Privacy & Security 

Application security for the above architecture cuts across all places where an un-

trusted source or destination is used. The encrypted enrolment data file is 

uploaded in the DMZ to ensure against Trojans or malwares. 

 

The enrolment/update data packets are encrypted by the client using public key 

cryptography with each data record having an HMAC which can identify any 

integrity violation of the data. Master keys are stored and managed within HSM 

(Hardware Security Module) appliance. It must be noted that the enrolment packet 

is constructed in memory and encrypted prior to writing of the file. All of the data, 

including biometrics and demographic data, is never stored in unencrypted form. 

The packet is encrypted with a randomly generated AES-256 symmetric session 

key and the key itself is encrypted with a 2048 bit public key, selected from a bank 

of UIDAI public keys. 

 

Following should be noted: 

 Every enrolment station, registrar, enrolment agency, operator, and 

supervisor are registered and authenticated. 

 Every packet is biometrically signed by operator (and supervisor in various 

cases) and contains complete process data including station id, timestamp, 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 118 

location (pin code, GPS). This allows strong validations and traceability at 

packet level. 

 Every enrolment data packet is “always” stored in PKI encrypted, tamper-

evident files and are never decrypted or modified during transit. 

 Enrolment data is “never” decrypted until it is reached within UIDAI’s data 

centre’s secure production zone. 

 

Usage of strong 2048-bit PKI encryption technologies ensures that no agencies or 

persons can access, modify, or misuse the resident data during field enrolment or 

in transit to the UIDAI data centres. 

 

In addition to enrolment packet, resident data in Aadhaar master database and BI 

data store is protected through various security measures. These include: 

 Encryption – used to ensure data is encrypted in database and not 

available to administrators and other users in plain text format. 

 Anti-Tampering – used to ensure data is only altered by authorized 

applications and NOT via command line SQL scripts. 

 Data Partitioning – data is partitioned vertically (some attributes about 

resident is in one database while others in separate ones) and across 

multiple databases with a random alias (UUID based RefID) being the only 

link to ensure there is no central database table where all resident data is 

available. 

 Anonymization – hashing techniques are used for anonymizing data in 

BI/Reporting data store, still having the ability to match and do analytics. 

 

Other than application techniques as described above to protect resident data, 

UIDAI has implemented data centre best practices and technologies such as 

firewalls, IPS systems, zoning and access control, centralized security policy 

management, audits, 24x7 monitoring through Security Operations Centre (SoC), 

and strong security procedures used to ensure CIDR is protected. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 119 

4.2.9 Data Model and Technology Stack 

Enrolment module uses various data stores in a loosely coupled fashion for 

managing entire enrolment and lifecycle processes. There are 4 core data stores 

that provide single source of truth and these core data stores are wrapped with 

APIs that provide access from other modules. These are: 

1. Active Enrolment Master – This is where core data about resident and 

some key process metadata (operator id, registrar/EA codes, timestamp, 

station id, etc.) related to active enrolments and update request updates are 

stored. This is typically about 30-40 million. EID and RefID are the unique 

keys. 

2. Aadhaar (UID) Master – Once Aadhaar number is allocated to the record 

or if updates are done, this data store is populated with core resident data 

including photograph, and key data related to that particular 

enrolment/update request. This data model also includes update history 

with timestamp attached to the main UID master table. Because this is 

permanent and need to handle 2-4 billion in eventual state, data is sharded 

100-way using the first 2 digit of Aadhaar number as the shard key. To 

handle photo blob storage, within each UID master shard, another 16 way 

shard is used using 3rd digit ensuring no table is growing beyond 

manageable size and is still accessible by the Aadhaar number without 

alternate index lookup. 

3. Reject Master – This database stores all rejected enrolments. Data model is 

identical to UID Master except the “Aadhaar Number” column. It is not 

necessary to shard this since number of rejects are not large. In addition, 

access to this is not required to be super fast or not that frequent. Since this 

is identical to UID Master, photos are sharded 16-way within this database. 

4. Packet Archive – This is the permanent archive of “all” enrolment/update 

packets ever received in the system. This is primarily a large pool of file 

system storage with random access indexes maintained within RDBMS. 

 

 

 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 120 

Following diagram depicts enrolment data model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other modules such as upload, ABIS middleware, Data Quality, Manual 

Adjudication, etc use an extended database of their own with link to the above core 

data via either EID or RefID. They can also be linked via Aadhaar number itself in 

the case of components that provide features at Aadhaar level. These extended 

databases are typically component level audits that can be archived away after a 

period. Analytics (BI) module is used for long term analytics/reporting where all 

events are stored within Hadoop Hive Atomic Data Warehouse (ADW) for long 

period of time. Various Hive and map-reduce jobs are run on that atomic data 

warehouse to derive aggregate metrics. 

 

Figure 13: Enrolment Data Model 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 121 

APIs wrap the core data models and provide uniform way to access this data via 

EID/RefID/UID irrespective of the state they are in (being processed, Aadhaar 

allocated, or rejected). Status tracking API, Common Search API, Advanced Search 

API are these core APIs. Other services such as e-KYC API, e-Aadhaar service, etc all 

built as wrappers on top of these core internal data access APIs.  

 

Below diagram depicts technology stack used within enrolment server module at a 

high level. In addition to those depicted above, there are several open source 

libraries used throughout the system. Following table lists the technology stack of 

Aadhaar enrolment server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Architecture element Technology mapping 

Operating System Any Enterprise Linux (RHEL is used as of now) 

Application language Java 1.6 or above 

Messaging Platform – 
Publish/Subscribe, Queues 

RabbitMQ – provides high throughput messaging, distributed 
deployment across data centres and high availability, reliability options 
like message persistence and transaction support 

Figure 14: Technology Stack of Enrolment Server 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 122 

Application Container Spring Framework – provides lightweight container for Java objects, 
Security via Acegi, AOP, Remoting, and implementation of Dependency 
Injection for better maintainability 

Enterprise Service Bus Mule ESB – Integrates well and runs inside Spring, Implements the 
SEDA model suitable for event driven applications like UID enrolment 
server 

Data store mapping layer Hibernate plus custom wrapper layers for handling multiple types of 
data sources, sharding, etc 

RDBMS Persistence – storing 
relational data 

MySQL – SQL compliant and replaceable with equivalent open source 
or commercial alternative 

Distributed File System 
persistence 

Hadoop Distributed File System (HDFS) – supports deployment on 
Linux and on commodity grade disks. Cloudera and MapR distributions 
are used. 

Large storage Large SAN storage (multiple storage boxes from vendors like EMC) 
using commodity SATA disks, archive data done within XFS file system. 

Batch Processing – execution 
of scheduled and repeating 
jobs 

Spring Batch – elaborate framework managing jobs, steps within jobs 
and tasks within. Provides support for file system read-write jobs 

Application monitoring In-memory metrics collectors implemented in Java 

Enrolment extended data 
stores 

MongoDB is used to store extended enrolment data that are 
unstructured and document oriented. 

HBase is used to store biometric template extracts from the enrolment 
packets. The templates are used by SEDA stages, when required and 
also replicated by the Authentication servers. 

Various web app UIs (Portal, 
NoC, etc) 

Liferay enterprise portal 

HTML, Javascript, CSS, Apache Tomcat calling Spring services 

BI, Analytics, Reporting Apache Hive (Hadoop family) for atomic warehouse and various metric 
computations, Pentaho and MySQL for derived metric storage, 
reporting, etc 

Encryption/Decryption, PKI 
key storage,  

HSM (network appliance) 

Transliteration and Indian 
language data matching 

Cognirel’s and CDAC Transliteration and Matching Library complying 
to Aadhaar Transliteration API 

4.3 Authentication Module 

Authentication module handles online resident authentication from various 

authentication user agencies. In addition to the main authentication service which 

offers multi-factor demographic/biometric authentication in an end to end secure 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 123 

fashion, this module also contains related services such as best finger detection, 

one-time-pin request, etc. Unlike enrolment, authentication is an online service 

and is mainly concerned about response time per transaction.  

 

As described in chapter 2, Aadhaar authentication supports demographic, 

biometric, and OTP (and combinations of these) based authentication as an online 

service. It is deployed as a secure HTTP(S) service accessible only through secure 

private network from authorized agencies. Biometric sub-system of authentication 

uses multi-modal biometric SDKs from multiple agencies, each tuned and cal 

liberated for best match at specified thresholds.  

 

Authentication server implements logic as per Aadhaar Authentication API [13] 

and various server side parameters such as biometric match thresholds, SMS 

templates, which SDK to use for particular modality, etc. are configurable as per 

UIDAI policy. Documents related to Authentication Operating Model [23], 

Authentication Framework [24], Authentication Security [25], etc are available on 

UIDAI website. 

 

As per UIDAI authentication security policy [25], Aadhaar authentication and 

related online services (Best Finger Detection and OTP Request) are deployed as 

an HTTPS service and are only accessible over a private network (MPLS or leased 

lines). Authentication user agencies (AUAs) use network services of Authentication 

Service Agencies (ASAs) to access UIDAI’s production setup. Authentication is 

deployed across both data centres in active-active fashion.  

 

Following diagram depicts the network architecture of authentication and related 

online services. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Authentication Network Architecture 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 125 

4.3.1 Authentication API 

Aadhaar Authentication API [13] is designed in such a way that applications that 

use the API can be implemented in any programming language, can run on any 

operating system, can work on any device form factor, can work over any network, 

and can be integrated easily into any application. Such flexibility is critical given 

the fact that Aadhaar identity authentication may be used in all sorts of 

applications running on handheld devices to larger systems over low bandwidth 

mobile networks to high bandwidth broadband networks. 

 

There are two main parts to the API input data: 

1. PID Block – This is the core data structure of the input containing 

resident’s identity attributes that are matched with the data on the server. 

PID block may contain demographic data, biometric data, and/or OTP. 

Formats, validation rules, etc are defined in detail in API specification. PID 

block is encrypted at source and is never decrypted until it reached UIDAI 

authentication server. PID supports data in XML [26] or ProtoBuf [27] 

formats. PID block contains all sensitive data and is encrypted and to stop 

tampering (post encryption) encrypted HMAC value is also sent to UIDAI 

servers. PID block itself is versioned, independent of API version, to support 

backward compatibility as future versions evolve. PID block is formed on 

the capture device in memory before transmitting to AUA server. 

2. Authentication XML – Once PID block is formed, it is subsequently 

wrapped in API envelop. This container XML has necessary meta 

information such as API version, AUA code, API usage license key, device 

data, and most importantly the Aadhaar number of the resident. 

Authentication XML is typically formed on the AUA server using the PID 

block that came from front-end device. It is then digitally signed and sent 

via ASA network to UIDAI server.  

 

API supports exact and partial matching strategies for demographic data, 

structured and unstructured address matching, single or multiple biometric 

records matching including multi-modality (fingerprint and iris), and matching of 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 126 

OTP providing multi-factor capabilities. API also supports strong security features 

and size optimization features (ProtoBuf [27] and Synchronized Session Keys). 

4.3.2 Biometric Authentication 

UIDAI offers both fingerprint and iris (one or multiple) authentication schemes. As 

per UIDAI’s ecosystem strategy, authentication module also allows certified device 

vendors to supply fingerprint/iris capture devices to AUAs for their use on the 

field to conduct Aadhaar authentication. Already there are several vendors 

providing single finger, multi finger, single iris, and dual iris capture devices 

complying and certified as per UIDAI specification. API allows any of these certified 

devices to be used. UIDAI has published several papers with specific details on the 

devices and overall use of biometric in authentication scheme [28] [29] [30]. 

4.3.2.1 Aadhaar Biometric SDK API 

UIDAI created a standardized API specification for biometric SDKs [31] in Java and 

asked the all the Biometric Service Providers providing software to UIDAI to 

implement this standard API. These SDKs, in turn, provide modality specific 

matching and other capabilities that can be embedded within various applications 

including authentication server. Following are the key reasons to take such an 

approach: 

 Vendor neutrality – Aadhaar system is implemented using open standards 

and standard APIs to ensure that all components across the system are 

neutral to proprietary and vendor specific features.  

 Interoperability – To allow various systems to interoperate in a seamless 

fashion it is critical that standard interfaces are used. This allows common 

data format definitions, protocols across the components that expose 

similar functionality.  

 Use of best-of-breed algorithms – An open API allows best of breed 

algorithms to be used for special purposes. For example, if one fingerprint 

algorithm works well for old age people, and another one for younger 

people, a common API is required to dynamically choose and use one 

algorithm based on the input.  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 127 

 Plug-n-play capability – When multiple modalities and algorithms are 

used, for true plug-n-play capability, common API and discovery mechanism 

is required. 

 

Using this API, SDK developers may expose support for one or many modalities. 

For example, an SDK developer specializing in fingerprint algorithms may choose 

to implement only fingerprint modality support while some other SDK may 

provide support for fingerprint, face and iris modalities.  

 

There are two major components that need to be exposed via this API from within 

the SDK: 

 Quality Check and Segmentation (QSS) Engine: This interface is meant to 

expose quality check, segmentation, and sequencing functionality.  

 Extraction and Matching Engine: This interface is meant to expose 

extraction and matching functionality. 

 

All SDKs used within UIDAI complying with Aadhaar Biometric SDK API [31], 

following architectural and design aspects are taken care of to ensure scalability, 

interoperability, and manageability: 

 Thread Safe – SDK implementation are thread safe to ensure multi-

threaded applications can embed the SDK without functional or technical 

issues and should continue to run correctly and reliably on large scale. 

Aadhaar application modules are built in a multi-threaded fashion for 

handling scalability on multi-core machines.  

 Statelessness – All SDK functionality (except for insert/identify operation) 

within interface are stateless in the sense that none of those method calls 

should result in any state being maintained within the SDK. This is critical 

to ensure that when insert/identity operations are not used, a single 

instance (singleton) of the engine can be used across threads to handle 

large scale.  

 Multi-platform Support – Aadhaar system is built on Java and supports 

multiple platforms such as Linux and Windows. Currently, SDK supports 

Linux 32-bit and 64-bit, Windows 32-bit and 64-bit on x86 architecture.  

 No Data store – SDK should not mandate any persistent data store for 

storing data. It is expected that data is stored and managed externally by 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 128 

the application using the SDK. For SDK configuration, it may use an 

embedded data store or configuration files.  

 No External Dependencies – Since Aadhaar applications run on a 

production network isolated from Internet and is secure, it is essential that 

SDK does not have any dependency on any external resources outside the 

machine or network in which it is running. 

4.3.2.2 Single/Multi biometrics and Labeled/Unlabeled Matching 

Unlabeled matching: The frontend authentication device does not provide the 

position/label of the finger presented (e.g. right thumb) to the authentication 

server backend, hence the backend matches it with all the 10 fingers of the given 

resident. This method is referred to as unlabeled matching or 1:10 matching. 

 

Labeled matching: The frontend authentication device provides the 

position/label of the finger presented (e.g. right index) to the authentication server 

backend, hence the backend matches it with exactly that finger of the given 

resident. This method is referred to as labelled matching or 1:1 matching. 

 

Since unlabeled matching involves multiple matching operations, it results in more 

false matches at the same threshold. Hence, such a system must be operated at a 

higher threshold to maintain the target FAR, which results in a higher FRR as 

compared to a system based on labelled matching. However, a labelled matching 

system depends on correct labelling of the finger by an operator, which may 

introduce human error, and increase the rejection rate as well as require 

additional training. 

 

During the BFD process the best finger of the resident is determined. Since the best 

finger is determined at the backend it is stored on the server side against the 

resident record. Knowledge of the best finger in the backend can be used to 

implement an adaptive threshold scheme in the following method. 

 Resident presents a finger for authentication with providing a label (once 

the resident has gone through BFD process the resident is likely to present 

the best finger, however the resident is not restricted to the best finger). 

 At the backend, ten matches are performed to return up to 10 different 

scores (against his/her all fingerprints): 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 129 

o A lower threshold is applied for matching the best finger. This 

enables minimizing FRR. 

o A higher threshold is applied for matching other fingers. This 

enables the resident to match at a higher threshold even if they do 

not present best finger. Higher threshold allows system to prevent 

increase in FAR. 

 

If resident uses best finger, then matching would be at threshold lower than 

“unlabelled” threshold else it would be at threshold slightly higher than 

“unlabelled” threshold. Assuming most residents would use their best finger as 

they get familiar with usage and hence Aadhaar authentication achieves a much 

lower overall FRR without compromising FAR. 

4.3.2.3 Biometric Matching Server 

At a high level, biometric matching servers which are internal services within 

overall authentication, are highly configurable and rules driven. These servers use 

specific SDKs in embedded form to do various biometric matching and related 

functions. 

 

During data load and as part of everyday Aadhaar enrolment, both finger and iris 

templates are extracted for specified SDKs and stored in HBase which is the core 

resident data store for authentication and related services. During actual 

authentication, incoming templates are matched against the stored ones and based 

on the modality and threshold, a pass/fail response is generated. If there are 

multiple fingers or dual iris as part of input, a fusion algorithm is used to arrive at 

the eventual match score. Matching logic is as follows: 

 Server looks up the configuration and selects appropriate SDKs (specially 

tuned SDKs for each of the modality can be used in a plug-n-play fashion). 

 Then the match is made for all biometric input records and match score is 

obtained. 

 Once all match scores are available, adaptive fusion scheme is used in 

determining the fusion (combined) score. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 130 

 Fusion score is compared against appropriate fusion pass/fail score for that 

SDK (note that pass scores that are calibrated for each SDK using millions of 

test authentications). While doing this, labelled (finger position known) and 

unlabeled (finger position unknown), with their different match thresholds 

are also taken into consideration. 

 

SDK Server is implemented as a Java server with embedded SDK and any number 

of SDK servers can be added to cluster as the overall system scales. Authentication 

servers connect over the local network to SDK servers whenever required to do 

biometric matching. Each of the SDK servers itself is multi-threaded and stateless 

so that same pool of threads can be used for many matches. 

4.3.3 One-Time-Pin (OTP) Authentication 

OTP request can be initiated by the resident by calling IVR or sending SMS or the 

request can be initiated by the application on behalf of the resident using OTP 

Request API [15]. OTP is always delivered on the resident’s mobile and/or email 

and application is expected to capture that during authentication so that OTP can 

also be validated along with authentication. 

 

The application initiated OTP request should work according to following flow: 

1. Application (an application on an assisted device or self-service kiosks, or 

applications on the Internet), wanting to use Aadhaar OTP as a factor within 

Aadhaar authentication, initiates the transaction flow. 

2. Application captures Aadhaar number. 

3. Application, through AUA server, invokes the OTP Request API by forming 

digitally signed API Input XML. 

4. UIDAI server processes the input, validates it, generates OTP, and sends it to 

resident’s registered mobile and/or email. 

5. UIDAI server then responds to the OTP request API caller with an XML with 

success or indicating any error. 

6. AUA application then requests resident to enter OTP that was received on 

his/her mobile and/or email so that application can package all that data 

and invoke Aadhaar authentication. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 131 

For each OTP request an audit trailed needs to be maintained at data centres. Audit 

Trail should be replicated from regional data centres to the central audit 

repository. These audit trails capture incoming data and responses in a digitally 

signed audit XML with additional data such as matching scores and internal 

configurations used for future references. 

 

Aadhaar OTP Request service (or simply OTP service) is exposed as stateless 

service over HTTPS. These servers, quite like authentication servers, are load-

balanced within the data centre and is available in active-active mode across data 

centres. OTP service uses Voldemort as the in-memory distributed cache. Every 

OTP is configured to expire (if not used) within a specified time interval (e.g. 20 

minutes). OTP is delivered via internal outbound SMS API which uses a standard 

SMS API (internal HTTP service) to connect via SMS server to deliver SMS to 

resident. If email is registered by the resident, OTP is also sent via email. All these 

services are stateless, load-balanced services and can scale horizontally. 

 

If resident needs to manually request OTP (instead of AUA application initiated via 

API), he/she can do so using one of following means: 

1. Send an SMS with text “OTP <Aadhaar-number>” to UIDAI’s OTP mobile 

number. Aadhaar OTP server ensures origin mobile is same as that Aadhaar 

holder’s registered mobile before generating and sending an OTP. 

2. Visit UIDAI Resident portal page, enter Aadhaar number along with other 

mandatory details. 

3. Aadhaar mobile application which will also allow offline HOTP. 

4.3.4 Authentication Server 

Authentication server implements all the logic necessary to match and 

authenticate Aadhaar identity claims. It is built using a highly scalable architecture 

supporting distributed active-active deployments across geographically separated 

data centres. It is highly secure and configurable to meet the stringent 

requirements. The Authentication server primarily has 2 core sub-modules: 

1. Resident data extraction into Authentication data store 

2. Core Authentication service 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 132 

4.3.4.1 Resident Data Extraction 

Enrolment server processes enrolment packets and stores the Aadhaar’s 

demographic data in UID Master which contains demographic and photo data. 

Aadhaar data that is needed for authentication has to be stored in database that 

offers faster read/writes and promises higher throughput. Since RDBMS and XFS 

based archival system cannot be used for reading resident data during 

authentication (100+ million reads a day) as they do not offer desired 

performance, it is imperative that data is extracted from enrolment data stores and 

stored in a high performance, distributed, read data store such as HBase. 

 

In addition, the biometric authentication requires usage of biometric template 

gallery, which is biometric feature set extracted from raw biometric images. Hence, 

the processing of biometric images also has to be performed as part of preparing 

data for authentication purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above logical view describing the creation of resident data within authentication 

module has the following sub-steps (as per number on the diagram): 

Figure 16: Authentication Resident Data Load 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 133 

1. As enrolment packets are processed by Enrolment Server, they are copied to 

Enrolment Packet Store.  

2. If enrolment packet passes all the checks defined by Enrolment server, an 

Aadhaar number is generated for that enrolment and is persisted in Aadhaar 

master database. 

3. Enrolment server is built on SEDA architecture wherein the enrolment packets 

processed in various stages. A dedicated SEDA stage is added within 

enrolment/update flow, whose responsibility is to publish the Aadhaar number 

(UID) to a queue for further processing for authentication purposes. 

4. “Authentication Data Extraction Server” is the component that is responsible 

for creating resident data for authentication purposes. This component listens 

on a queue for the Aadhaar numbers whose data has to be created/updated 

and stored in Authentication database. There are two components that can 

request for Authentication data extraction. 

a. Enrolment server: Every time a new Aadhaar number is generated or 

existing one is updated, enrolment server publishes the Aadhaar 

number to the queue which is consumed by data extraction server. 

b. Authentication data on-boarding server: This component is responsible 

for trigger Authentication data extraction for a list of Aadhaar numbers 

on-demand and is used for synching, on-demand extraction, and specific 

administrative tasks of on-boarding specific list for explicit sync. 

5. For each of the Aadhaar number for which Authentication data extraction is 

requested, “Authentication Data Extraction Server” collates data from two 

sources: Demographics data from “UID Master” in RDBMS and raw biometrics 

data from the encrypted Enrolment packet (either in HDFS or archive XFS). 

6. Since the biometrics images from the Enrolment packets are not directly usable 

for authentication purposes, the “Authentication Data Extraction Server” 

extracts the templates for these by using one or more Biometric SDKs. 

7. Network hardware security module (HSM) is used by “Authentication Data 

Extraction Server” for encryption and HMAC computation of the demographics 

and biometrics data before storing it in the data store (HBase).  

8. The demographics and biometrics data extracted in above steps are persisted 

in the “Central Resident Data Store” (HBase) as XML Documents. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 134 

4.3.4.2 Core Authentication 

Core authentication setup consists of applications and infrastructure components 

needed for support OTP API and Authentication API.  

 

Following steps are required during the processing of OTP requests: 

1. One time pin (OTP) is one of the factors for authentication. An OTP request is 

initiated by one of the following: 

a. A resident can request the OTP by sending an SMS to UIDAI’s short code. 

The SMS message will be converted into a HTTP GET call by the Telco’s 

SMSC and the result of HTTP GET call is typically sent back to caller’s 

mobile phone as SMS. Authentication setup hosts the “SMS/IVR 

Gateway” that handles the HTTP GET calls from SMSC. In this particular 

case, the web interface will be responsible for handling SMS messages 

requesting for new OTPs. 

b. Alternatively, residents can request for OTPs using resident portal or in 

future using Aadhaar mobile application. 

c. AUA application may invoke “Aadhaar OTP API” [15] which, in turn, 

triggers internal OTP service to send OTP to resident mobile/email. 

2. In all the above cases, the OTP requests will be converted into a service call on 

the “OTP Server”. “OTP Server” hosts a REST style web service that is available 

only within the UIDAI network and is capable of generating new OTPs and 

creating notification events so that OTP is delivered to resident via email and 

SMS. “OTP Server” generates a random 6-digit OTP, and stores it in “OTP Store”, 

wherein the OTPs are indexed by Aadhaar number. Both OTP and Aadhaar 

number are SHA-1 hashed before getting stored in “OTP Store”. 

3. “OTP Server” generates an audit trail capturing request and response details. 

The audit trail is stored in “Audit Trail Store”. 

4. “OTP Server” generates a notification event that is passed on to “Authentication 

Event Sink” application through a queue. It also generates a BI event with the 

details about request and an ID for the generated OTP so that OTP generation 

request and corresponding Authentication request in that OTP was used can be 

correlated, if needed, for reporting purpose. 

5. “Authentication Event Sink” converts the notification event into an Email 

message and into an SMS message (sent via SMS Gateway). 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 135 

6. “Authentication Event Sink” converts the BI Event into a comma separated 

value string and persist it into Hadoop Hive based atomic data warehouse for 

all analytics and reporting needs. 

 

Following steps are required during the processing of authentication requests: 

1. Authentication API is routed by AUA hosted application servers through the 

ASA private secure network to UIDAI CIDR. 

2. Additionally, Authentication API may also be invoked by internal wrapper 

applications (e-KYC, update service, mobile/IVR/portal applications, etc). 

3. Requests received by both the above mediums are processed by the 

Authentication server cluster behind a hardware load balancer. This 

application is the entry point for processing of incoming XML requests. It 

interacts with the Network HSM (Hardware Security Module) for decryption of 

encrypted parts of the authentication requests. 

4. Authentication server validates whether HMAC present in the Authentication 

request has already been used by checking whether it is present in HMAC store. 

If yes, then, the Authentication request can be considered to be replayed. Based 

on the configuration of Authentication server, such requests may be processed 

or rejected. If HMAC is not used earlier, Authentication server will record the 

usage of HMAC by storing its value in the “HMAC store”. 

5. Authentication server validates “AUA” and “ASA” codes, digital signature, and 

license keys. Then server reads the resident’s data from the “Resident Data 

Store”. If input contains demographic data, demographic authentication is 

performed first. The “Language SDK” is used to match the values if name or 

address is specified in Indian Language. Master data and recent resident data 

are cached in-memory to ensure that repeated reads of same data can be read 

faster instead of going to the database always. 

6. If OTP is used in the authentication request, then, the OTP value for that 

Aadhaar number is read from “OTP Store” for matching. 

7. If authentication request contains biometrics, then, biometric template 

verification using “Biometric SDK Server” is performed against stored 

biometric templates for that resident. 

8. After a successful/failed authentication, Authentication server creates an audit 

record, and stores it in the “Audit Trail Store”. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 136 

9. Authentication server generates two sets of events after the authentication. 

Both these events are published to a queue to be consumed and processed by 

“Authentication Event Sink” application. 

a. Authentication notification events – These events represent notification 

to resident about the result of authentication. 

b. BI Event – These events represent BI events that capture those details 

about the authentication which are needed for BI analytics. 

10. Event Sink module processes the incoming “Notification Events” by 

transforming them into Email and/or SMS to residents. Event Sink module also 

processes the “BI Events” by converting it into a comma separated value string 

and by storing it in Hadoop Hive atomic data warehouse. 

4.3.4.3 Scalability and High Availability 

Scalability and availability are the key NFR cross-cutting concerns for all the 

components of this architecture. This section details how scalability and 

availability concerns can be addressed for each of the components within 

authentication. 

 

Authentication, OTP and SMS/IVR Gateways 

Authentication Architecture has following components that are web-based in 

nature and uses Apache Tomcat as runtime: 

1. Authentication Server 

2. OTP Server 

3. SMS/IVR gateway 

 

These applications are made highly available by deploying multiple instances of 

the application in a cluster and then load-balancing them using hardware load 

balancers. Entire deployment is repeated in geographically separate data centres. 

 

All these applications are stateless in nature. None of these applications need 

session-like semantics, which means that a request can be processed by any node 

in the cluster across both data centres. As the load on the server increases, 

application can be scaled horizontally by adding application instances. If any node 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 137 

goes down in the cluster, the other members of the cluster continue to provide 

services and thus ensuring service availability in case of node failures. If all the 

nodes in a cluster go down, Intra-DC load balancer routes the requests to other DC. 

 

Biometric SDK Server 

Biometric SDK Server is also a web application similar to Authentication and OTP 

servers. Hence, it can also be scaled either using hardware load balancer or a 

software load balancer such as Apache httpd server. 

 

Authentication Data and Event Sync Servers 

Authentication data extraction server can be horizontally scaled to extract data for 

more number of Aadhaar numbers by adding more instances. Currently this is 

scaled to handle 1.5 million a day to meet Aadhaar generation of enrolment 

module. Due to inherent nature of Rabbit MQ messaging wherein one message is 

processed by only one consumer, by adding more RabbitMQ consumer instances, 

extraction throughput can be increased as needed. Template extraction can also be 

done across data centres. 

4.3.5 Information Privacy & Security 

Aadhaar authentication uses open, standard based security mechanism to secure 

data and service and is designed to address transaction privacy. 

 

API Data Security 

Both Authentication and OTP API detail mechanisms to secure the data in transit 

by proposing usage of encryptions, HMAC, and digital signatures, and ensure that 

data cannot be stolen or modified in the transit, and its authenticity and origin can 

also be verified. 

 

Data should be encrypted with a dynamic session key using AES-256 symmetric 

algorithm (AES/ECB/PKCS7Padding). Session key, in turn, is encrypted with 2048-

bit UIDAI public key using asymmetric algorithm (RSA/ECB/PKCS1Padding). 

Session key must not be stored anywhere except in memory and should not be 

reused across transactions. Only re-use of session key that is allowed is its use as 

seed key when using synchronized session key scheme. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 138 

 

The encryption/decryption flow is as defined below: 

1. Aadhaar number, demographic, and biometric details as required by the 

application are entered into the device along with other factors such as OTP 

if it is used. If OTP is used, the request for OTP is sent to Aadhaar server 

along with Aadhaar number (see “Aadhaar OTP Request API 1.5” 

specification). Aadhaar Authentication server sends the OTP back to the 

resident’s registered mobile phone as an SMS and to the registered Email 

address. 

2. AUA/Sub-AUA application generates a one-time session key. 

3. The authentication “Data” XML block is encrypted using the one-time 

session key and then encoded (base 64). 

4. The session key is then encrypted with the UIDAI public key. 

5. AUA application on the device sends the encrypted block along with HMAC 

data to AUA server. 

6. AUA server forms the final authentication XML input for API including 

license key, transaction reference (“txn” attribute), digitally signs it, and 

sends the data to Aadhaar authentication server through an ASA network. 

7. Aadhaar authentication server decrypts session key with the UIDAI private 

key. The data block is then decrypted using the session key. 

8. The resident’s decrypted biometric, demographic information, and optional 

OTP is taken into account during match based on the input. 

9. Aadhaar authentication server responds with a “yes/no” as part of the 

digitally signed response XML. 

 

Aadhaar authentication records all the authentication requests and their responses 

for audit purposes. Notification inbox is maintained for each resident using which 

last n months (based on UIDAI’s audit retention policy) of notifications can be 

viewed by resident. 

 

All authentication responses are digitally signed by UIDAI which helps AUAs to 

maintain electronic audits. In addition, attributes “ts”, “info” within the API 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 139 

response can be used to verify if it the request was indeed for a particular Aadhaar 

number, if the request indeed had a biometric factor, when was the authentication 

done, etc. Such self verifiability of the authentication response allows 3rd party 

applications to trust and electronically verify the response quite similar to that of 

an offline trust establishment against a signed paper. 

 

Input Tamper Protection 

As per authentication API specification, it is essential that authentication client 

application sends an HMAC for the PID block so that server can verify the PID 

block’s integrity. The value of this element has to be computed by authentication 

client as SHA-256 Hash of unencrypted PID block. 

 

Authentication server performs the following processing on every request: 

1. Decode and decrypt the PID XML from <Data> element. 

2. Re-compute the SHA-256 Hash of PID XML. 

3. Decode and decrypt the value of <HMAC> element. 

4. Compare the re-computed SHA-256 hash with HMAC value received in 

authentication request. 

a. If both values match, then, integrity of authentication request is 

preserved and server will proceed with further processing of the 

request. 

b. If values do not match, reject the authentication request with error 

code representing “HMAC Validation failed”. 

 

CIDR Data Storage 

Within the UIDAI backend systems, Aadhaar number is not stored in any of the 

authentication database. Instead, a SHA-1 hash of Aadhaar number is stored. In 

addition, record level encryption and tamper detection features ensure resident 

data within HBase is neither available to internal administrators nor it can be 

modified by unauthorized people or applications. 

 

Audit trail stores the request and response XMLs along with unique response code 

as the audit key. When publishing events to BI system, RefID is published instead 

of Aadhaar number, and entire BI system is stripped off all PII data. Similarly, PINs 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 140 

are never stored in plain text form. Their SHA-1 hash value is store to avoid anyone 

from being able to view the raw values and misusing them. 

 

Network and Server Security 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Securing network at multiple levels between the front end authentication points to 

CIDR is necessary to ensure protection against network attacks which result in 

“Denial of Service” (DoS). It is also important to ensure high availability and 

redundancy even if some parts of network are compromised or unavailable.  

 

AUAs and their partners (sub-AUAs, application providers, etc.) are required to put 

appropriate network security in place to ensure their systems are protected from 

attack. It is hence mandated that standard network practices such as usage of 

encrypted channel, usage of digital certificates, IP filtering, authentication of 

Figure 17: Authentication Network Security Layers 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 141 

applications/users/ devices, network protection through firewalls and NIPS, 

auditing, etc. are put in place.  

 

Within CIDR, UIDAI ensures multiple levels of network security through creation of 

DMZ, application zone, and data zones and protecting all the zones using multiple 

firewalls, network intrusion prevention systems, and strong access control and 

audit schemes. 

 

Since many applications and services across the country will heavily depend on 

Aadhaar authentication, it is strategically important to not to expose Aadhaar 

authentication over Internet (or any public network) and not create “single point” 

of attack that can potentially affect many services. It is hence critical to expand the 

secure zone beyond CIDR and allow authentication service to be exposed through 

multiple network end points. Creation of ASA as a network service provider and 

exposing authentication service ONLY through secure private connections using 

leased lines is strategic to ensure multiple end points always exist to provide 

authentication service in a secure and always available fashion. As per UIDAI 

policy, authentication and other online services such as e-KYC are never exposed 

over Internet or any public network [25]. 

 

Replay Attack Protection 

Request replay attack refers to a form of network attack in which an attacker can 

acquire an authentication request XML, and re-send it to Aadhaar Authentication 

server to perpetrate a fraud. 

 

Each authentication request has a unique session key and HMAC. Aadhaar 

Authentication server keeps track of all the session keys and HMACs used for a 

period of n hours, after which an authentication request is considered expired. 

 

On receiving an authentication request, server ensures that session key and HMAC 

contained in the request are not being re-used by checking it against the list of 

session keys that were seen by it. If they are reused, it would mean a possible 

replay, and such requests are rejected. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 142 

4.3.5.1 Registered Devices 

Aadhaar authentication supports two kinds of sensor devices to be used to capture 

biometrics – Public Devices and Registered Devices. 

 

Term “Registered Devices” refers to devices which are registered with Aadhaar 

system for encryption key management. Aadhaar authentication server can 

individually identify and validate these devices and manage encryption keys on 

each registered device. Term “Public Devices” refers to devices which are not 

registered with Aadhaar system and use their own encryption key generation 

scheme. Aadhaar authentication server does not individually identify public 

devices and uses an alternate encryption strategy for them. 

 

In order to protect against reuse of stored biometric, several measures are already 

in place such as deploying signed applications, local encryption from firmware to 

host, operator/device authentication by AUA, usage of multi-factor authentication, 

resident SMS/Email alerts on every biometric authentication, host device 

ID/location for analytics and fraud management, and so on.  

 

In the case of public devices, although above security measures are in place, since 

the encryption between capture device and host is not managed, there is still a 

technical possibility of having stored biometrics being used on a compromised 

device/application to conduct some transactions although it can be potential 

detected and subsequent usage stopped on the server using above security 

monitoring and protection scheme already in place. 

 

Aadhaar Registered Devices Specification [32] pushes the security all the way to 

capture hardware to address the above need. 

4.3.5.2 Resident Notifications 

Resident is notified by SMS and/or Email about the outcome of authentication 

requests. Notification will not, by default, be sent for demographic Authentication 

unless resident has explicitly opted for it whereas mandatory notification is sent 

on biometric/OTP authentication. Notifications will also be available via 

portal/mobile applications. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 143 

4.3.6 Data Model and Technology Stack 

Following diagram represents logical data model of authentication databases: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resident and Audit Data Store 

Resident and audit trail data stores are based on Hadoop HBase which allows 

horizontal scaling of the underlying data nodes and high availability. 

 

OTP and HMAC Store 

OTP and HMAC stores both need following characteristics: 

1. Fast read/write response times and high throughput 

2. Storage of data for short period of time (max of 1 day) and expiry 

3. Data need to be visible to all the systems and across DCs in near real time. 

Figure 18: Authentication Data Model 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 144 

To meet these needs, Aadhaar authentication server used Project Voldemort, a 

distributed in-memory key-value store. This is also used for data caching of master 

data and recently used resident data.  

 

Technology mappings to architecture elements 

Architecture element Technology mapping 

Operating System Any Enterprise Linux (RHEL is used as of now) 

Application language Java 1.6 or above 

Messaging Platform – 
Publish/Subscribe, Queues 

RabbitMQ – provides high throughput messaging, distributed 
deployment across data centres and high availability, 
reliability options like message persistence and transaction 
support 

Application Container Spring Framework – provides lightweight container for Java 
objects, Security via Acegi, AOP, Remoting, and 
implementation of Dependency Injection for better 
maintainability 

RDBMS Persistence – storing 
relational data 

MySQL – As being used by already existing applications. 

Large-scale random-access data store 
for long term storage. 

Hadoop HBase – Cloudera and MapR distributions used in 
production. 

Small-scale random-access distributed 
in-memory key-value store 

Project Voldemort – is a distributed key value storage 
system. It is used for storing OTPs and Skeys in addition to 
master data and recently used resident data. 

Batch Processing – execution of 
scheduled and repeating jobs. 

Spring Batch – elaborate framework managing jobs, steps 
within jobs and tasks within. Provides support for file system 
read-write jobs 

Web Application Container for API 
services 

Tomcat  

Various UIs (portal, NoC, etc) Liferay, HTML, Javascript, CSS, Apache Tomcat 

BI, Analytics, Reporting Apache Hive (Hadoop family) for atomic warehouse and 
various metric computations, Pentaho and MySQL for 
derived metric storage, reporting, etc 

Encryption/Decryption, PKI key 
storage,  

HSM (network appliance) 

Transliteration and Indian language 
data matching 

Cognirel’s and CDAC Transliteration and Matching Library 
complying to Aadhaar Transliteration API 

 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 145 

4.4 E-KYC Module 

The Aadhaar e-KYC API can be used by an approved agency (KUA) to provide 

paperless KYC experience for Aadhaar holders. Whenever availing a service, 

agency that provides the service may request resident to either share a paper copy 

of the Aadhaar letter or if the agency is an e-KYC user agency, request resident to 

authorize via biometric/OTP authentication, to retrieve demographic and photo 

information in digitally signed, encrypted, XML format. 

 

Aadhaar e-KYC service provides a convenient mechanism for agencies to offer an 

electronic, paper-less KYC experience to Aadhaar holders. The e-KYC service 

provides simplicity to the resident, while providing cost-savings from processing 

paper documents and eliminating the risk of forged documents to the service 

agencies. 

4.4.1 E-KYC API 

Aadhaar e-KYC API [16] allows agencies to build paperless, electronic PoI and PoA 

verification on a computer or on a tablet or on mobile/handheld making it easy to 

provide services such as bank account opening, insurance issuance, etc at the 

customer. API is designed to support applications to be built using any 

programming language, to run on any OS, and access via any network. It is built as 

a wrapper to core authentication API ensuring resident is integral part and is 

explicitly authorizing every e-KYC transaction. 

 

 

 

 

 

 

 

 

 

 

 Figure 19: Aadhaar e-KYC Flow 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 146 

Following the data flow of a typical KYC API call from left to right and back. 

1. KYC front-end application captures Aadhaar number + biometric/OTP of 

resident and forms the encrypted PID block. 

2. KUA forms the input XML, digitally signs it, and sends to KSA. 

3. KSA forwards the KYC XML to Aadhaar KYC API. 

4. After successful resident authentication, responds with digitally signed and 

encrypted XML containing demographic and photograph of the resident. 

5. KSA sends the response back to KUA enabling paper-less electronic KYC. 

4.4.2 Information Privacy & Security 

The Aadhaar e-KYC service does not compromise security for convenience, instead 

offers a convenient solution that is very secure, resident authorized and protecting 

data privacy by eliminating paper trail on the field. 

 

For details, refer to “UIDAI e-KYC Policy” [17] and “Aadhaar e-KYC API” [16] 

documents. 

4.4.3 E-KYC Server 

Aadhaar e-KYC server module is built as a simple wrapper to internal core APIs – 

Authentication API and Common Search API. It is developed as a web application 

deployed within a web container behind a load balancer. E-KYC service is stateless 

service and is load balanced across multiple machines within a data centre and 

clusters across data centres.  

 

This web application primarily does the following 4 key steps: 

1. Validate input request 

2. Authenticate resident using API call to authentication cluster via HTTPS 

3. Obtain resident demographics and photo using API call to Common Search 

API cluster via HTTPS 

4. Audit the transaction before returning the digitally signed and encrypted 

XML back to KUA. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 147 

4.5 Platform & Common Modules 

Aadhaar application is built on common technology platform based on Java and 

open source technologies. In addition, common modules such as portals, business 

intelligence & reporting, fraud detection, etc are shared across enrolment and 

authentication. Following sections describe architecture details of these 

frameworks and modules. 

4.5.1 Technology Platform 

Application modules are built on common technology platform that contains 

frameworks for persistence, security, messaging, etc. The Platform standardizes on 

a technology stack based on open standards and using open source where prudent. 

A list of extensively used open source technology stacks is given below: 

 Spring Framework – application container for all components and runtime 

 Spring Batch – runtime for various batch jobs 

 Spring security – for all application security needs 

 Mule ESB – runtime for loosely coupled SEDA stages of enrolment flow 

 RabbitMQ – messaging middleware 

 Hadoop stack – HDFS, Hive, HBase, Pig and Zookeeper 

 Quartz – scheduling of batch jobs 

 MySQL – RDBMS for storing relational data 

 Apache Solr – Index for full text search 

 Apache Tomcat – Web container 

 Liferay – portal framework 

 Several other open source libraries for random number generation, 

hashing, advanced data structures, HTML UI components, etc 

 

The diagram below depicts the e-Governance platform as a set of layered 

technology building blocks that are used to build applications. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 148 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frameworks in the Platform are implementations of design patterns and solutions 

to common technical needs. The frameworks permit high degrees of reuse on 

implemented behaviour and are often extensible. Following sections describe 

these briefly. 

Figure 20: Application Stack & Frameworks 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 149 

4.5.1.1 Application Bootstrap Framework 

The technology platform runtime follows a pre-defined bootstrapping sequence. 

This ensures order in loading of application containers and its components. The 

bootstrap framework is JVM agnostic and has the following capabilities: 

1. Provide ability to specify configuration locations from which the application 

is initialized. 

2. Configure application wide logging preferences. 

3. Specify the type of application container to be loaded i.e. Generic, Service, 

Batch or SEDA container. 

4. Provide hooks into the bootstrapping sequence. Applications may extend 

the thread safe bootstrapping sequence with bootstrap extensions. Each 

bootstrap extension may also influence the bootstrap outcome i.e. allow it 

to proceed or veto the entire bootstrapping sequence thereby ensuring that 

the application startup is complete where all application dependencies are 

initialized. 

5. Provide JMX based administration interfaces to manage life-cycle of the 

bootstrapped application instance 

4.5.1.2 Persistence Framework 

Persistence framework within the technology platform provides a standardized 

mechanism to persist data to respective data stores. The Persistence Manager 

interface is used to persist data and has methods similar to the JPA framework.  

 

The persistence framework is designed using the following entities: 

 Persistence manager – Primary interface to the persistence framework 

 Persistence provider – Registered with the Persistence Manager and 

normally maps to one data store type – RDBMS, DFS etc. 

 Persistence handler – Registered with the Persistence Provider and 

implements the persistence calls. 

 Persistent entity – Any business entity that requires persistence 

 Criteria – Metadata container for the persistence call 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 150 

 

Persistence framework provides the following value added features: 

 Declarative mapping between persistent entities and their persistence 

stores. Ease of switching persistence strategies. 

 Transaction support in persistence calls to specific data stores. Currently 

the framework supports single schema transaction support for RDBMS 

persistence provider. 

 Sharding support for distributing data across data store instances. Shard 

hints identify target data store instances and may be specified at different 

levels of granularity viz. at the persistent handler level, for individual 

persistent entity instances and in search criteria. The framework also 

supports data retrieval from multiple shard sources. 

 Persistence provider implementations for MySQL, HDFS, HBase, XFS, etc.  

 The framework has connection pooling support for many of these data 

stores and also implements connection retry and recovery mechanisms. 

4.5.1.3 Event Framework 

Technology platform provides an Event framework for use by various platform 

components and applications to perform the following: 

 Publish self-contained technical or business information that may be 

categorized as events in the system. Events are relatively small data 

elements that communicate occurrence of an action at a point in time, 

execution of a business logic or rule, indicate a notification or signal an alert 

of some kind.  

 Enable point to point and multi-cast patterns for event publishing. 

 Enable event consumption by Event type or subscribe to events from logical 

(URI based) or physical endpoints (message queues). 

 Enable bulk or individual events publishing and consumption 

 Provide a mechanism for integration between UID applications and sub-

systems, enabling independent deployment and scaling of event producers 

and consumers. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 151 

 

The event framework is designed around the following concepts: 

 Event publisher – provides behaviour for publishing events to application 

contexts, URIs or queues 

 Event consumers – provides behaviour for event consumption from URIs or 

queues and perform forwarding 

 Event types – Framework or application module specific event data 

containers 

 Event multi-casting- Act as a mediator for mapping event publishers and 

consumers instead of hardwiring the two. Also enables one-to-many 

messaging pattern. 

 

Event publishing and consumption in the Event framework is either synchronous 

or asynchronous, depending on specific producer and consumer implementations. 

The framework interfaces therefore define method signatures devoid of any 

processing details. 

4.5.1.4 Task Framework 

Task Framework in the platform enables work to be dispatched and executed 

outside an application’s runtime container. Tasks may be executed within the same 

JVM or in a distributed manner on a compute grid. The application may decide on 

the execution mode after considering trade-offs between moving compute across 

machines and moving data across machines.  

 

The task framework is designed using the following: 

 A Task that encapsulates behaviour and data required for its execution. The 

task can travel across machine boundaries in its serialized form. 

 A TaskContext that may be used pass additional information such as 

previous tasks’ results and a mechanism to return results of its own 

 Data containers for capturing task execution results 

 Task Manager interface, and implementations, to execute tasks 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 152 

 

The simplest implementation executes the tasks in the same JVM as the 

application’s runtime and also within the same execution context. Task 

distribution across multiple processes or server instances has its overheads in data 

transfer and runtime management. 

4.5.1.5 Validation Framework 

Validation Framework in the platform provides a set of API for performing field 

level validations and also grouping multiple of these into business entity specific 

validations. The validation framework implements the “Strategy” design pattern.  

 

The Validation Framework is designed using the following: 

 Validator interface and its implementations for field-level validations. 

Generic expression based validations are supported. 

 Business entity specific validation strategies that may be reused in 

application services and components where identical set of validations are 

required on the business entity type. 

 Container for collecting and returning validation outcomes from execution 

of validation strategies. 

 Ability for validators to influence execution of subsequent validations in a 

strategy. A Validator implementation may veto or allow continuation of the 

validation sequence. 

4.5.1.6 Service Framework 

Service Framework is an important building block in the platform that is used by 

multiple Aadhaar application modules. All business functionalities such as 

enrolment stages and authentication services are built on this framework. It has 

the following features: 

 Implement services as stateless POJO objects and declaratively enable their 

access from local and remote clients. This stateless nature of services aids 

horizontal scalability of business services and their distribution across a 

number of servers. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 153 

 Implement a service interface that is request-response based. The interface 

classes are compiled from XSD definitions. This ensures that interfaces are 

derived from well-defined and standards-based schemas thereby aiding 

integration. 

 Locate and load service definitions from the deployed project and provide 

uniform means to invoke the deployed services via a single Service 

container instance deployed per JVM.  

 Manage life cycle of services and integrate it with that of the Service 

container. 

 Intercept service requests and permit implementations to be plugged-in 

that perform pre-processing steps like authorization checks and to measure 

service performance metrics. 

 Provide a uniform mechanism for service addressing using a uniquely 

identifiable service key comprising of a service name and version. 

 Provide means to transparently change the deployment of services from 

local to remote machine or set of machines. 

 Ability to break up service implementation activities into Tasks that may 

then be executed within the same JVM or on a compute grid. 

4.5.1.7 Batch Framework 

Batch framework runs as a server instance and is built entirely on Spring Batch 

and integrates with the Quartz scheduling framework for scheduling needs in 

batch job execution.  

 

The custom code implementation on top of what is available through the Spring 

Batch framework is quite limited in the platform. The design of the batch 

framework itself is therefore not elaborated in detail in this document. 

 

This layered architecture has three major high level components: Application, 

Core, and Infrastructure. The application contains all batch jobs and custom code 

written by developers using Spring Batch. The Batch Core contains the core 

runtime classes necessary to launch and control a batch job. Both Application and 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 154 

Core are built on top of a common infrastructure. This infrastructure contains 

common readers and writers, and services for retrying, etc. 

 

The following custom features have been built on top of the Spring batch 

framework: 

 Batch Component Container – This Container is a Component Container 

implementation that provides runtime management features for batch jobs 

within the context of Platform bootstrap. This component container locates 

and loads batch jobs as independent Spring application contexts. This 

separation of job contexts allows isolation of one job from another within 

same container and also provides distribution of jobs across different batch 

instances. 

 JMX interface for Job Administration – The following information from the 

job registry and repository is exposed via JMX – “Invocation statistics” 

(provides individual job specific invocation statistics such as status of last 

execution, execution time and errors if any) and “Out of turn job execution” 

(provides ability to execute a job interactively. This is particularly useful 

during development and testing and in production scenarios when a certain 

job needs to be executed well before its cron trigger fires.) 

4.5.1.8 Rule engine Framework 

The Rule engine is a general purpose framework that enables applications to 

externalize business rules such that the application and the rules can evolve 

independently of one another. Rule authoring is typically done by business users 

while application modules are delivered by development teams. An effective rule 

engine framework provides an application the required flexibility to support 

feature enhancements and adding new features like business validations and 

checks.  

 

The rule engine framework within Aadhaar application is built using the JBoss 

Drools platform. Rule Engine framework provides following enhanced 

functionality over the default Drools API. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 155 

 Defines an instance of a rule engine containing a set of “Knowledge Bases” 

(group of rules). “Process Flows” are defined to further classify rules within 

each Knowledge Base. 

 The Rule Engine framework allows to cache the rules in rule engine and 

refresh from Drools Guvnor at given time interval for performance. 

 On application startup the rule engine will be initialized and all the defined 

Knowledge Bases will be loaded to working memory of rule engine. 

 On application destroy the rule engine is stopped by closing all open 

resources and disposing the Knowledge Agent associated with the 

Knowledge Base. 

 “Drools Rule Executor” provides means to programmatically read the rule 

attributes. 

 The input data and rule execution result structure is defined outside the 

framework, so that the framework users have the option to define data 

formats. 

 The Drools Guvnor is completely configurable, so that rules can be added, 

removed and modified at any time and makes the changes available without 

restarting the rule engine. 

4.5.1.9 Security Framework 

The technology platform provides a comprehensive application security 

framework built over the Spring Security. Spring security is a powerful and mature 

application security framework for use by enterprise applications. Platform 

leverages the following features from this framework: 

 Easy Configuration using Spring Dependency Injection – aligns well with the 

rest of the platform frameworks like Server, Service Framework, Batch 

Framework – all of which are built using Spring. 

 Non-intrusive and Non-invasive – Keeps the application objects free of any 

security code. 

 Pluggable architecture – Follows interface driven design and therefore 

allows replacement of critical aspects of the framework like Authentication 

and Authorization provider implementations. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 156 

 Support for comprehensive Authentication mechanisms: 

o LDAP based authentication of user principals 

o Single Sign-on support via integration with CAS 

 Support for comprehensive Authorization services: 

o Role and ACL (Access Control List) based authorization definitions 

o Web-layer security using Http filters and integration with Spring 

MVC 

o Service layer security by allowing to secure method invocations on 

Spring managed POJO objects 

4.5.1.10 Cryptography Components 

Security Service Module provides a standardized security solution by 

implementing Java cryptography, public key infrastructure to encrypt/decrypt 

data, hashing techniques, tamper detection schemes using HMAC etc. The security 

component comprises a set of APIs, and implementations of commonly-used 

security algorithms based on Java Cryptography Architecture (JCA) and The Java 

Cryptography Extension (JCE) frameworks and used to implement all 

cryptography required operations. 

 

The module provides an API that security and application developers use to 

implement security functions in Java applications. Within that context, the module 

also acts as an intermediary between security functions that are implemented in 

Java applications using the Java security service APIs and security providers 

configured into the Java Security Service Module. 

 

Cryptography module uses the following cryptographic provider packages: 

 An implementation of the RSA algorithm and PKCS11 HSM Provider.  

 An implementation of the SHA-1 and SHA-256 message digest algorithms.  

 A RSA key pair generator for generating a pair of public and private keys.  

 A certificate path builder and validator for PKIX, as defined in the Internet 

X.509 Public Key Infrastructure Certificate and CRL Profile.  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 157 

 A certificate factory for X.509 certificates and Certificate Revocation Lists. 

 A keystore implementation. 

4.5.1.11 SEDA Runtime 

The Staged Event Driven Architecture (SEDA) runtime is used when an application 

has one of the following requirements: 

 Need to perform parallel processing of business logic in a distributed 

manner across a number of machines. The processing pattern is 

asynchronous. 

 Need to orchestrate a sequence of steps or stages where the output of one 

stage is passed on as input to the next, after modifications if any. 

 Support easy scaling out of workloads across a set of machines and 

managed entirely through configuration. 

 

The simplified view of SEDA design is shown below: 

 

 

 

 

 

 

 

 

 

 

 

The Mule open source framework is used as is in the SEDA runtime. Mule is a light 

weight Java ESB (Enterprise Service Bus) and is highly scalable and configurable. 

4.5.1.12 Build and Deployment packaging 

All application modules within the technology platform follow a standardized build 

and deployment process which produces language runtime and operating system 

specific deployment bundles. The sub-sections below describe the process and 

tools used in build and deployment packaging. 

Figure 21: A Typical SEDA Flow 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 158 

 

 

 

Building the Platform and its applications 

All application instances run on one of the J2SE editions of Java runtime. The 

output binaries for the application modules vary in content. They are however 

built using a common tool. 

 

Application source code is maintained in SVN (source control) and is broken up 

into a number of projects. Multiple projects may be combined to create an 

application binary. SVN projects are created to abstract related set of modules or 

features that can be independently included in another application. As a general 

practice, any functionality that may be reused is a candidate project and multiple 

such related features eventually become one. 

 

Apache Maven is used to build all SVN projects. The .pom (Project Object Model) 

build file is used to specify the output binary format for a project, its dependencies 

and the build order to be followed. It is a powerful build system with multiple plug-

ins and extensions available to suit project needs. It comes with pre-defined 

targets for performing certain well defined tasks such as compilation of code, 

binary packaging and running test harnesses.  

 

Linux RPM deployment packaging 

All application instances are packaged and deployed as Linux RPMs. The term RPM 

is used to refer to both the installation package and the package management tool 

used to create it. The RPM Package Manager is a program used for installing, 

uninstalling and managing software packages in Linux. 

 

The use of RPM provides lots of advantages like easy program installation, un-

installation and in deploying updates. The output of the build process is a “.rpm“ 

file (per each deployment unit) which typically includes the compiled programs 

and dependent libraries.  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 159 

4.5.2 Business Intelligence & Reporting 

Platform standardizes on analytics and reporting technology that integrates well 

with the rest of the stack and at the same time meets most of the feature needs of 

applications built on the Platform. BI architecture consists of the three broad 

sections of data acquisition, Data storage and Data distribution platform; all of 

which can be considered to be part of an over-arching data warehouse strategy.  

 Data acquisition includes all source systems (enrolment, authentication, 

and other application modules) that feed data into the data warehouse. It is 

necessary to have the BI system integrated with all the process to ensure 

consistency of data across multiple operational data sources. 

 Atomic Data Warehouse (ADW) is the repository that contains all data in its 

granular details. It is important to note that data storage for reporting and 

analytics should be separated from the core transaction data (data that is 

part of the live production systems). The advantage of the highly de-

normalized analytics data being completely separated is to ensure 

scalability and make least impact to production systems. Within Aadhaar 

ADW, no information that can be personally identifiable (PII) is stored. 

 Data distribution platform provides access to derived data and knowledge 

to end users (UIDAI officials, partners, and public). This data is presented to 

the end users and general public, in a timely manner, while still protecting 

privacy, confidentiality, and security.  

 

Aadhaar BI system employs highly scalable, distributed, reliable and open source 

technology components to meet the requirements. Aadhaar BI platform consists of 

an Atomic Data Warehouse (ADW) consisting of granular level analytics data and 

tools to load data from source systems into ADW (both event publishing via 

messaging layer as well as offline data extraction via ETL tools). In addition to 

ADW, BI platform consists of a “data distribution platform” that enables 

provisioning of data through various datasets and an “analytical delivery platform” 

that delivers relevant metrics, dashboards, and portals. ADW is built using Hadoop 

Hive to handle “big data” storage requirements and Pentaho platform to manage all 

the data in the back-end (ETLs, Access, Reporting, etc). 

  



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 160 

BI platform caters to long term data analytics and ADW stores data that is not 

changing. Operational data, on the other hand, refers to in-process and volatile 

information. Aadhaar system maintains an Operational Data Store (ODS) that 

provides this information on an “end of day” basis for such volatile operational 

data. This separation of the Operational and BI data helps UIDAI meet the short 

and long term reporting and analytics requirements.  

 

The logical view of the BI platform is given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.3 System & Application Monitoring (NoC) 

The following key principles are adhered to in the solution architecture and 

technology selection: 

 Non-intrusive monitoring: The monitoring solution must be least 

intrusive with respect to its interface with the components being 

monitored. Integration with monitoring agents and server uses standard 

and ubiquitous protocols like HTTP and JMX. This also obliterates vendor 

lock-in with the chosen third party monitoring tool. 

Figure 22: BI Technology Platform 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 161 

 Minimal overheads due to monitoring: The monitoring agents and 

interfaces must have almost negligible overheads on the components being 

monitored. This guideline also applies to use of associated infrastructure 

like network bandwidth and storage. 

 Data correctness: The information collected by the monitoring system 

must be correct. It may however not be accurate when compared to point in 

time information stored in the system’s database. This trade off reduces the 

monitoring overheads while not compromising the premise of monitoring. 

 Aiding system trouble shooting: The primary purpose of the monitoring 

solution is to identify, proactively where possible, potential issues in system 

processing of business transactions i.e. enrolments, authentications etc. 

This ensures that the information gathered and analyzed by the monitoring 

agents and the server is kept to a minimum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System monitoring differentiates the infrastructure and application monitoring: 

 Application monitoring: Includes metrics exported by custom built 

application components like enrolment, authentication, etc. 

 Infrastructure monitoring: Includes metrics available from Operating 

system processes (CPU, Memory utilization etc) and infrastructure services. 

Figure 23: Application Monitoring in NoC 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 162 

5 Key Lessons and Conclusion 

AAadhaar system is built purely as an identity platform that other applications, 

Government and private, can take advantage of. A sound strategy and a strong 

technology backbone enabled the program to be launched ahead of plan in Sept 

2010 and reach the kind of scale that was never achieved in any biometric identity 

systems across the world. In less than 4 years since launch, Aadhaar system has 

grown in capability and more than 600 million Aadhaar numbers have been issued 

so far using the system. 

 

Entire technology architecture behind Aadhaar is based on principles of openness, 

linear scalability, strong security, and most importantly vendor neutrality. Aadhaar 

software currently runs across two of the data centres within India managed by 

UIDAI and handles 1 million enrolments a day and at the peak doing about 600 

trillion biometric matches a day to meet its peek needs. In coming years Aadhaar 

system will cover rest of the country proving identity to more than 1.2 billion 

residents in India and its electronic usage (Authentication, e-KYC, etc) is expected 

to grow exponentially. 

 

Architecting Aadhaar system keeping the scale, security, ecosystem design, and 

most importantly the constraints of an e-Governance system, has been a learning 

experience. Following are the architectural and design lessons learned from 

Aadhaar project. Some of them may be obvious to many, but, nevertheless they are 

still important to be listed down for completeness purpose. These points ought to 

be kept in mind by architects especially when working on other large scale e-

Governance projects. 

 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 163 

5.1 Key Lessons 

1. Define and use APIs for all components – Insist on API based, loosely 

coupled modules from day one. All functional components that you write 

must be encapsulated in a reusable API (preferably REST style for inter 

system usage) driven and must have an automated test suite. You will be 

proven wrong if you assume components will not be re-factored or re-

written. If system needs to be adaptable and flexible, code will need to be 

rapidly re-factored. Hence having an API driven approach with strong 

regression test suite on top of these APIs are critical to such flexibility. 

2. Embrace open source, eliminate vendor lock-in – As proven in many 

very large scale Internet applications and in Aadhaar project, open source 

and free does not mean it is not enterprise grade, it works well and it scales 

well. So embrace it fully! In addition, especially for e-Governance projects, 

using open source means you have control over code that was seen and 

used by potentially 1000’s of developers across the world. This means 

higher security compared to proprietary & closed codebase. If you really 

need to procure special purpose components for which no open source 

alternates are available, ensure you define a standard, open interface for all 

vendors proving that component to adhere. Eliminating vendor lock-in in e-

Governance projects is utmost important. 

3. Create single source of truth – When managing data sources (master data 

or transactional data), it is critical to wrap the core functionality (read, 

update) into APIs and ensure all modules requiring that data always access 

it through those APIs. Also, ensure business logic is centralized into APIs to 

avoid inconsistent information access and interpretation across modules. 

People always expect consistent truth from the application rather than 

absolute truth at that instance of time. Data islands, duplicated data, and 

data inconsistency can cause huge issues with business logic, data visibility, 

and decision making. 

4. Believe in data – For any large scale e-Governance project, collection of 

granular usage and process metrics are very critical to ensure all decision 

making is done using intelligence derived from data rather than gut feel and 

anecdotes. Architects should ensure application collect all kinds of process 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 164 

data (who, when, where, app screen usage, clicks, exceptions, issues, for 

that matter anything measureable!) using application instrumentation, 

store in big data analytics systems, derive metrics and intelligence, and 

make it available to decision makers. 

5. Build failure resilient system – When running large scale software 

system, many components will fail including hardware in your daily 

operations. Expecting highly skilled manpower in operations team to 

handle such failures is not realistic. Experts are far and few and it is critical 

that system is built to be able to recover from such failures automatically. 

Unless system recovers, retries transactions, and sort of self-heals, there is 

no way a large system can successfully function. 

6. Security and privacy should be by design – For any national system, 

especially applications containing resident personal information, 

transaction information, it is critical that data security and privacy are 

designed as part of strategy and architecture rather than as an afterthought. 

Encryption, hashing, anonymization, auditing, access control, etc are 

essential for all applications that are built today even if data is managed by 

people that you trust. 

7. Scalability can’t be bought, architect for it – One thing that is 

fundamental in building a large scale application is that “scalability” comes 

from the design patterns and architecture of each and every component 

within the system. It is silly to assume that usage of a large scale COTS 

product can somehow scale the application. No single product or vendor 

can promise scalability rather, it is in the architecture! 

8. Create an ecosystem – All e-Governance applications should be built with 

open APIs and multi-vendor ecosystem strategy. As an architect, if you do 

not find at least two vendors offering same capability/technology, do not 

use it unless it is completely open source. Whenever you need to use a 

proprietary module, build an open API and ensure you wrap the vendor 

product specific APIs behind it to ensure plug-n-play approach and ability 

to use an alternate product in future. 

9. Open scale-out is the only way – No large scale system should be built 

assuming homogenous computing, storage architecture. Applications must 

assume availability of completely heterogeneous, multi-vendor, 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 165 

virtualized/non-virtualized systems and ensure applications can scale 

across such environment. Usage of commodity computing, built to grow in 

linear fashion, ability to procure compute/storage as and when required, 

etc are critical to ensure you take advantage of rapid advancements and 

price reduction in technology. Nothing else other than an “open scale-out” 

strategy you should agree to! 

10. Keep it simple – Finally, keep it simple, minimal, avoid scope creep, and be 

ready to rewrite/re-factor components as they evolve. Build a strong 

architecture foundation, build strong generic components, build open APIs 

and interfaces, and let individual features evolve over time on top of these. 

 

 





AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 167 

References 

 

[1]  UIDAI, "UIDAI Strategy Overview," 

http://uidai.gov.in/UID_PDF/Front_Page_Articles/Documents/Strategy_Overveiw-001.pdf, 2011. 

[2]  UIDAI, "Aadhaar Web Portal," https://portal.uidai.gov.in/, 2009-2014. 

[3]  UIDAI, "Role of Biometric Technology in Aadhaar," 

http://uidai.gov.in/images/FrontPageUpdates/role_of_biometric_technology_in_aadhaar_jan21_2012.pdf, 

2012. 

[4]  UIDAI, "Role of Biometric Technology in Aadhaar Authentication," 

http://uidai.gov.in/images/role_of_biometric_technology_in_aadhaar_authentication_020412.pdf, 2012. 

[5]  UIDAI, "Aadhaar Technology Strategy," 

http://uidai.gov.in/images/AadhaarTechnologyStrategy_mar2014.pdf, 2014. 

[6]  UIDAI, "Aadhaar Product Document," http://uidai.gov.in/images/AadhaarProductDoc_mar2014.pdf, 

2014. 

[7]  UIDAI, "UIDAI Background," http://uidai.gov.in/all-about-uidai/uidai-background.html, 2009. 

[8]  UIDAI, "The Demographic Data Standards and verification procedure Committee Report," 

http://uidai.gov.in/UID_PDF/Committees/UID_DDSVP_Committee_Report_v1.0.pdf, 2009. 

[9]  UIDAI, "Aadhaar Enabled Service Delivery," 

http://uidai.gov.in/images/authDoc/whitepaper_aadhaarenabledservice_delivery.pdf, 2012. 

[10]  UIDAI, "UID Numbering Scheme," 

http://uidai.gov.in/UID_PDF/Working_Papers/A_UID_Numbering_Scheme.pdf, 2010. 

[11]  UIDAI, "The Biometrics Standards Committee Report," 

http://uidai.gov.in/UID_PDF/Committees/Biometrics_Standards_Committee_report.pdf, 2010. 

[12]  UIDAI, "Aadhaar Automated Biometric Identification System (ABIS) API," 

http://uidai.gov.in/UID_PDF/Working_Papers/Aadhaar_ABIS_API.pdf, 2010. 

[13]  UIDAI, "Aadhaar Authentication API 1.6," 

http://uidai.gov.in/images/FrontPageUpdates/aadhaar_authentication_api_1_6.pdf, 2012. 

[14]  UIDAI, "Aadhaar Best Finger Detection (BFD) API 1.6," 

http://uidai.gov.in/images/FrontPageUpdates/aadhaar_bfd_api_1_6.pdf, 2012. 

[15]  UIDAI, "Aadhaar One-Time-Request (OTP) API 1.5," 

http://uidai.gov.in/images/FrontPageUpdates/aadhaar_otp_request_api_1_5.pdf, 2012. 

[16]  UIDAI, "Aadhaar E-KYC API 1.0," http://uidai.gov.in/images/aadhaar_kyc_api_1_0_170912.pdf, 2012. 

[17]  UIDAI, "Aadhaar E-KYC Service - Policy," http://uidai.gov.in/images/ekyc_policy_note_18122012.pdf, 

2012. 



AADHAAR TECHNOLOGY & ARCHITECTURE 

PAGE 168 

[18]  Data.Gov, "Data Portal for Government of India," http://data.gov.in/, 2012. 

[19]  UIDAI, "Aadhaar Biometric Capture Device API," 

http://uidai.gov.in/UID_PDF/Working_Papers/UID_Biometrics_Capture_API_draft.pdf, 2010. 

[20]  Wikipedia, "Universally Unique Identifier," http://en.wikipedia.org/wiki/Universally_unique_identifier, 

2012-2013. 

[21]  Oracle, "Java 6 UUID Class," http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html, 2011-2013. 

[22]  UIDAI, "UIDAI Data Update Policy ver 2.1," http://uidai.gov.in/images/update_policy_version_2_1.zip, 

2012. 

[23]  UIDAI, "Aadhaar Authentication Operating Model," 

http://uidai.gov.in/images/authDoc/d3_1_operating_model_v1.pdf, 2012. 

[24]  UIDAI, "Aadhaar Authentication Framework," 

http://uidai.gov.in/images/authDoc/d2_authentication_framework_v1.pdf, 2012. 

[25]  UIDAI, "Aadhaar Authentication Security Model," 

http://uidai.gov.in/images/authDoc/d3_4_security_policy_framework_v1.pdf, 2012. 

[26]  W3C, "Extensible Markup Language (XML)," http://www.w3.org/XML/, 2012. 

[27]  Google, "Protocol Buffers," https://code.google.com/p/protobuf/, 2013. 

[28]  UIDAI, "Role of Biometric technology in Aadhaar Authentication," 

http://uidai.gov.in/images/role_of_biometric_technology_in_aadhaar_authentication_020412.pdf, 2012. 

[29]  UIDAI, "Iris Authentication Accuracy - PoC Report," 

http://uidai.gov.in/images/iris_poc_report_14092012.pdf, 2013. 

[30]  STQC, "Bio-metric Devices Testing and Certification," http://stqc.gov.in/content/bio-metric-devices-

testing-and-certification, 2011-2013. 

[31]  UIDAI, "Aadhaar Biometric SDK API Version 2," 

http://uidai.gov.in/images/aadhaar_biometric_sdk_api_2_0.pdf, 2012. 

[32]  UIDAI, "Aadhaar Registered Devices Specification," 

http://uidai.gov.in/images/aadhaar_registered_devices_1_0.pdf, 2014. 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


