AD-A1S1 8*1 KRRSH 85 USER'S GUIDE - INPUT/OUTPUT FORHRT(U) LOCKHEED-CALIFORNIR CO BURBRNK H fl GRHON ET RL. JUL 85 LR-28777 DOT/FAR/CT-85-18 DTFR83-82-C-88884 1/3 UNCLASSIFIED F/G 1/3 NL DOT/FAA/CT-85/10 Technical Center Atlantic City Airport, N.J. 08405 KRASH 85 User's Guide — Input/Output Format to < i o < Max Gamon Gil Wittlin Bill LaBarge Prepared by Lockheed-California Company Burbank, California July 1985 Final Report DT1C This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161. Uj lA_ U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report. Hi*port No DOT/FAA/CT-85/10 ! Itie and Subtitle 2 Government Accession No Al&uU 201 3 5 Recipient's Catalog No Report Date RRASH85 USER’S GUIDE - INPUT/OUTPUT FORMAT Jul y 1985 _ 6. Performing Otganization Code Authorls! 8. Performing Organization Report No M. A. t.union, G. Witt 1 in, and W. L. LaBargo Z< Performing Organization Name and Address l.ockheed-California Company LR 30777 10. Work Unit No. 11. Contract or Grant No Burbank, CA. 91520 Sixinsonng Agency Name and Address S. Department of Transportation Federal Aviation Administration, Technical Center Atlantic City Airport, NJ 08405 _ DTFA03-84-C-00004 13. Type of Report and Period Covered FINAL Jan. 1984 - Sept. 1984 14. Sponsoring Agency Code S Supplementary Notes i 4 Abstract This document describes program KRASH as modified under Contract DTFA03-84-C-00004. updated version is denoted KRASH85. This document is a User's Guide and defines r-put and output formats appropriate for KRASH85. natures that are incorporated into KRASH85 include: An improved plastic hinge moment algorithm Gear-oleo metering pin coding' t - I.ond-interaction curves J An expanded initial conditions subroutine (combined with NASTRAN) * A comprehensive energy balance j * Center of gravity (c.g.) displacement, velocity, acceleration and force time histories . * Revised vertical beam orientation coding^ * Provision to save data for post-processing i.e., acceleration, mass location and forces * Provisions Co input preprocessed data, » A corrected uncoupled KR curve unloading/reloading algorithm Provisions to define a tire spring (remains normal to the ground plane) Provisions to number the masses to an arbitrary sequence A:i option to compute section shear and moment distributions Key Words (Suggested by Authorls)) mpuii'r program, KRASH, crash dynamics, nonlinear analysis, hybrid approach, aircraft, transport airplanes, general rv Lit ion aircraft, rotary wing aircraft, NASTRAN Security Classif. (of this report) NCIASSIFIED 18. Distribution Statement This document is available to the U.S. public through the National Technical Information Services, Springfield, Virginia 22161 20. Security Classif. (of this page) UNCLASSIFIED 21. No. of Pages 223 22 Puce" For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This report was prepared by the Lockheed-California Company under Contract DTFA03-84-C-00004. The report contains a description of the effort pe formed as part of Tasks II, III and IV and covers the period from January 1984 t’ September 1984. The work was administered under the direction of the Federal Aviation Administration with L. Neri acting as Technical monitor. The program leader was Gil Wittlin of the Lockheed-California Company. M. A. Gamon and W. L. LaBarge of the Lockheed-California Company refined pro¬ gram KRASH. P. Rohrer of the Lockheed-California Company provided valuable computer programming support. The Lockheed effort was performed in the Flutter and Dynamics Department. TECHNICAL SUMMARY This document describes program KRASH as modified under Contract DTFA03-84-C-00004. The updated version is denoted KRASH35. This document is a User's Guide and defines the input and output formats appropriate for KRASH85. Features that are incorporated into KRASH85 include: • An improved plastic hinge moment algorithm • Gear-oleo metering pin coding • Load-interaction curves • An expanded initial conditions subroutine (combined with NASTRAN) • A comprehensive energy balance • Center of gravity (c.g.) displacement, velocity, acceleration and force time histories • Revised vertical beam orientation coding • Provision to save data for post-processing i.e., acceleration, mass location and forces • Provisions to input preprocessed data • A corrected uncoupled KR curve unloading/reloading algorithm • Provisions to define a tire spring (remains normal to the ground plane) • Provisions to number the masses in an arbitrary sequence • An option to compute section shear and moment distributions TABLE OF CONTENTS Sec tion Page FOREWORD i i i SUMMARY V LIST OF FIGURES ix LIST OF TABLES ix 1 INTRODUCTION 1-1 2 USER'S GUIDE 2-1 2.1 OVERALL KRASH85 ANALYSIS SYSTEM 2-1 2.2 KRASH85 INPUT 2-8 2.3 OUTPUT AND SAMPLE CASE 2-93 2.3.1 KRASHIC Output 2-93 2.3.1.1 Echo of Input Data 2-93 2.3.1. 2 Formatted Print-Out of Input Data 2-94 2.3.1.3 Miscellaneous Calculated Data 2-122 2.3.1.3.1 Model Parameters 2-123 2.3.1.3.2 Ream Loads and Deflections Corresponding to Yielding 2-123 2.3.1.3.3 Overall Vehicle Forces/Accelerations at Time Zero 2-123 2 . 3 . 1 . 3 . 4 Individual Mass Forces/Accelerations At Time Zero 2-124 2.3.2 MSCTRAN Output 2-125 2.3.2.1 Executive Control Deck Echo 2-125 2. 3 . 2 . 2 Case Control Deck Echo 2-125 2.3.2.3 Input Bulk Data Deck Echo 2-125 2.3.2.4 Sorted Bulk Data Deck Echo 2-144 2 . 3 . 2 . 5 Displacement Vector 2-144 2.3.2.6 Load Vector 2-145 vii LIST OF FIGURES Overall KRASH85 Analysis System Sample KRASH85 Job Submittal KRASH85 Input Format KRASH85 Coordinate Systems Beam Element Coordi.ate System Orientations Standard Nonlinear Beam Element Stiffness Reduction Curves Large Transport Airplane Model - Sample Case Echo of the Input Data Formatted Printout of Input Data Miscellaneous Calculated Data MSC/NASTRAN Executive and Case Control Decks MSC/NASTRAN Input Bulk Data Deck Echo MSC/NASTRAN Sorted Bulk Deck MSC/NASTRAN Displacement Vector MSC/NASTRAN Load Vector MSC/NASTRAN Single-Point Constraint Forces MSC/NASTRAN Bar Element Forces Bar Element Force Sign Conventions, NASTRAN and KRASH MSC/NASTRAN Element Strain Energies MSC/NASTRAN Grid Point Force Balance KRASH85 Output, Initial Mass/Node Point Deflections KRASH85 Output, Additional Miscellaneous Calculated Data KRASH85 Time History Output KRASH85 Internal Beam Stress Data and Initial Mass Acceleration Error Output KRASH85 Summary Output Data KRASH85 Sample Output Time History Plots EXECUTIVE SUMMARY £ u c / Program KRASH, originally developed under Federal Aviation Administration sponsor¬ ship for predicting the response of general aviation airplanes to an impact environment, has been enhanced to include features that would facilitate the modeling of transport category airplanes. This document is the User's Gvide which defines the input and output formats appropriate for this new version of,Program KRASH known as KRASH 85. / ' ' / / 1 V A 'T <3 ' .-c \ - J /r ■■ / Z' / -r ( r 1 ' ■ ■ » ■ ' ■ y «'J-j « y . ■» « y .y - ■■ . » .’v-r."r;T ■ - y. ' \r. Tjy. lt. ■ - g - ; ~ • ? SECTION 1 INTRODUCTION Program KRASH, developed under a previous Federal Aviation Administration (FAA) sponsored contract DOT-FA75-WA3707 has been in the public domain since 1979. In subsequent years changes to enhance its usage have occurred. Recently, KRASH has been applied to modeling transport airplanes for impact conditions. Many of the recent program changes that have occurred are designed to facilitate modeling transport airplanes. The following modifications have been incorporated into KRASH85 and used recently to model transport category aircraft: • Improved plastic hinge moment algorithm • Gear oleo metering pin • Load interaction curves • Expanded Initial Condition Subroutine • Arbitrary numbering of lumped mass points Other modifications provide general enhancement capability and include: • Comprehensive energy balance • Computation of c.g. time histories • Revised vertical beam orientation coding • Post Processing of data, i.e., acceleration, mass location and forces • Corrected uncoupled KR curve unloading/reloading algorithm In addition, miscellaneous coding corrections have been made. The current version is denoted KRASH85. This document is the User's Guide and is limited to a description of the input-output format for KRASH85. 1-1 -V-V-V- »-■- * * » ® v *■ m SECTION 2 USER'S GUIDE 2.1 O VERALL KRASH85 ANALYSIS SYSTEM The overall KRASH85 analysis system consists of two separate KRASH programs called KRASHIC and KRASH85, plus a NASTRAN program denoted herein as MSCTRAN. The NASTRAN program used in this system is MSC/NASTRAN Version 63 (Aug 1, 1983). KRASHIC and MSCTRAN are used only if balanced initial conditions are required; KRASH85 is the normal KRASH time-history program. If KRASHIC and MSCTRAN are not used, then at time zero the beams in the analytical model will all have zero internal deflections and loads. The model will be located just above the ground and in the proper attitude, as specified in the input data. This initial balance is acceptable for certain types of problems, primarily those in which the aerodynamic loads on the vehicle are zero. For that situation, the lumped masses in the model are all accelerating downward at lg (free-falling), and the internal beam loads and deflections are actually zero. If nonzero aerodynamic forces are present, then the initial beam loads and deflections are not zero. Nevertheless, execution of KRASH85 by itself will automatically set the beam loads and deflections at zero. If this is done with nonzero aerodynamic forces, the system will be out of balance at time zero. In this situation, the dynamic response will be the result of two phenomena: • Dynamic response to the ground impact • Dynamic response to the initial imbalance The latter response is not desired, and can obscure the desired response or confuse the interpretation of the output data. The proper solution of this problem requires that the analytical model be in equilibrium at time zero with nonzero internal beam loads and compatible deflections. 2-1 This is essentially a straightforward static loads analysis problem. NASTRAN is used to solve the statics problem, and KRASIIIC is used to read KRASH85 input data and convert it into NASTRAN Executive Case Control and Bulk Data Decks. Figure 2-1 shows a flow diagram for the overall KRASH85 analysis system. The options available to the user include the following: 1. Run step 1 onlv (program KRASIIIC) Iterate steps 1 and 2, N times (user-specified) 3. Iterate steps 1 and 2, N times, then run step 3 (KRASH85) 4. Run step 3 (KRASH85) only The most general case is option 3. The iterations are required for the i ol lowing, reasons. The static solution used in MSCTRAN is Rigid Format 24, which is a small deflection linear static analysis. This method actually assumes aero deflections for the purposes of calculating t ransl'o rma t ion matrices for transforming beam loads from beam element axes to the global axis system, which in this case are airplane axes. Therefore, if the deflec¬ tions from MSCTRAN are used to relocate the K.RASH85 mass points, the KRASH35 calculated beam loads will bo proper in beam axes, but when resolved to mass axes will yield a system that is out of balance (since KRASH85 does not assume the deflections are zero when calculating the transformation matrices) The solution to this problem is to iterate steps 1 and 2, using the calculated deflections :rom MSCTRAN to relocate the mass and node points in KKASH at each step. Satisfactory convergence is achieved after about six iterations, and additional accuracy can be achieved by using up to ten itera- t ions. Beyond ten iterations, no further improvement in accuracy can he achieved duo to the I imitations in the number of digits that are written to tin' data sots that term the input and output of MSCIRAN. file KRAS!I analysis system shown in figure 2-1 is implemented through oh Centro I I .alienage (JCI.) . A job submittal using option 3 with six itera- t ions causes a total et 1 1 sequential jobs to be executed (b KRASIIIC, 6 MSCTRA! and 1 KRASH85). While tiiis may sound rather expensive, a typical case USER SPECIFIES WHICH OF FOLLOWING ANALYSIS STEPS TO PERFORM, OPTIONS ARE: • RUN STEP 1 ONLY • ITERATE STEPS 1 & 2 ONLY • ITERATE STEPS 1 & 2, THEN RUN STEP 3 • RUN STEP 3 ONLY RUNPROG KRASHIC STEP 1 • INPUT - XYZ.DATA (BASIC KRASH85 INPUT DATA SET, SPECIFIED BY USER) • OUTPUT - XYZ.NASBLK.DATA (NASTRAN EXECUTIVE, CASE CONTROL AND BULK DATA DECK GENERATED BY KRASHIC) • UPDATE 1 - USER SPECIFIED CHANGES TO KRASHIC CODING RUNPROG MSCTRAN • INPUT - XYZ.NASBLK.DATA (NASTRAN EXECUTIVE, CASE CONTROL AND BULK DATA DECKS, GENERATED IN STEP 1 BY KRASHIC) • OUTPUT - XYZ.NASOUT.OATA (DATA SET CONTAINING GRID POINT DISPLACEMENTS AND ROTATIONS, GENERATED BY MSCTRAN) RUNPROG KRASH85 STEP 3 • INPUT 1 - XYZ.DATA (SAME AS IN STEP 1) 2 - ACCEL INPUT DATA SET (OPTIONAL) 3 - EITHER XYZ.NASOUT.DATA FROM STEP 2 OR ABC.DATA IN USER'S FILE OR NOTHING • UPDATE 2 - USER SPECIFIED CHANGES TO KRASH84 CODING FIGURE 2-1. OVERALL KRASH85 ANALYSIS SYSTEM 2-3 (21 mass/27 beam, L airplane model) requires only about seven seconds per iteration on an IBM 370/3081, so that the iterated balanced loads can be determined in less than one minute. The .ICL is set up so that data a-ts NYZ . NASB1.K . DATA and XYZ. NASOUT. DATA are generated and named automatically, so the process is essentially invisible to the user. Step 3 (KRASH85) can be executed separately using option A. When this is done, the user has a choice of what to do for initial conditions. lie can specify any data set in his library, or use nothing at all. The latter corresponds to the mode of execution for prior versions of KUASI1. Once an initial condition data set (XYZ.NASOUT.DATA) has been generated, the user can execute .step 3 only while specifying XYZ. NASOUT. DATA for initial conditions. This will give a valid initial balance as long as modifications to the basic data set (XYZ.DATA) are restricted to items that do not affect the initial balance. The static loads problem could have been solved entirely within prop,ram KRASH, avoiding the complexity of achieving the system shown in figure 2-1 with ICL. However, the technique chosen has the advantage of automatically generating a NASTRAN model from a given KRASH Model. Since XYZ.NASBLK.DATA, is a complete NASTRAN input data set in the user's library, the user can easily edit this data set to exercise other NASTRAN capabilities. Examples of other NASTRAN features that could prove useful include eigenvalue calculations and model plotting. Figure 2-2 is a copy of the informaton displayed on a computer terminal during an option 3 run submittal. The items enclosed in rectangular brackets are the user responses. These are now discussed in detail. Some of the comments are of necessity applicable only to the Lockheed IBM 370/3081 installation, but are included to give some perspective on an actual appli- cation. User Response Description runprog krashi x(l) This is the initial command to invoke the Krash analysis system in Fig¬ ure 2-1 . ENTER TIME 10 ENTER LTNES CED WOULD YOU LIKE EXPRESS, STANDARD OR DEFERRED(VERNIGHT) T"RNAROUND FOR YOUR JOB? ENTER E, S UR D 0 Enter number 1 run KRASHIC only 2 iterate KRASHIC and MSCTRAN only 3 iterate KRASHIC and MSCTRAN, then run KRASH83 4 run KRASH85 only ut data of times to cycle through KRASHIC and MSCNASTRAN print execution results only for the last iteration? (Y/N) □ are you using B720.ICITER.NASOUT.DATA with the input data for the 1st iteration? (Y/N) 0 KRASHIC ITERATION #1 If temporary source changes then enter name of PAN updata data set. If none hit enter. Suppress compile listing ? (Y/N) E KRASHMSC ITERATION // 1 KRASHIC ITERATION # 2 KRASHMSC ITERATION # 2 FIGURE 2-2. SAMPLE KRASH85 JOB SUBMITTAL (SHEET 1 OF 2) KRASHIC KRASHMSC KRASHIC KRASHMSC KRASHIC KRASHMSC KRASHLC KRASHMSC KRASHIC KRASHMSC KRASHIC KRASHMSC KRASHIC KRASHMSC KRASHIC KRASHMSC ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION ITERATION // 3 // 3 // 4 # 4 # 5 // 5 # 6 # 6 # 7 # 7 # 8 // 8 // 9 » 9 // 10 // 10 KRASH84 is this a checkpoint/restart run? (Y/N) If temporary source changes then enter name of update data set If not then hit enter k83.icrc.data I HIT "RETURN" KEY IF NO DATA SET: (A) enter name of 2nd input data set of MASS ACCELERATIONS (b) enter name of output data set of MASS ACCELERATIONS (c) enter name of MASS and/or NODE POINT DISPLACEMENTS jU^Tj (GRAPHICS POST PROCESSOR DATA) How many copies of the printed output do you want? 1 SUPPRESS COMPILE LISTING ? (Y/N) y JOB E434367L SUBMITTED BY USER E434367 READY FIGURE 2-2. SAMPLE KRASH85 JOB SUBMITTAL (SHEET 2 OF 2) 2-6 User Response 10 50 d 3 B720.ICITER.DATA 10 y n kic .kvb.data Description Time limit for run = 10 minutes (actual execution time was less than three minutes) Output print limited to 50000 lines (actual output is 21000 lines, about 1.5 inches thick). Overnight (deferred) turnaround requested. (For runs less than 10 minutes, express turnaround is allowed. Results available within one to two hours). Option 3 is chosen. Basic KRASH85 input data set. This corresponds to XYZ.DATA in figure 2-1. Number of iterations of steps 1 and 2. Printout of KRASHIC and MSCTRAN is suppressed for the first nine itera¬ tions. Only the results for the last iteration are printed. Considerable output print will be generated if the results for all iterations are printed, (y = yes) It is possible to start the first iteration with an existing data set of NASTRAN output deflections. For example, five iterations could be run at one time, and five more at a later time. This option was not invoked for this example, (n = no) This is the name of a PANVALET update data set which is used to revise the source code for KRASHIC. If no revi¬ sions are specified, then hit carriage return (CR). A compiled listing of the subroutines changed in the previous step can be obtained. In the example, the listing is suppressed, (y = yes) The terminal displays KRASHMSC ITERA¬ TION it 1, etc., as the JCL for the sequential runs is being generated. The checkpoint/restart capability of KRASH85 is not used for this run. (n = no) User Response Descript ion k8S.iere.data This is the name of a PANVALET update data set which is used to revise the source code for KRASH85. if no revi¬ sions are specified, then hit carriage return (CR). In the exampLe shown, the CR was hit for each of these, so no data sets were specified. DSA, DSB, and DSC are indicated here to illustrate where these are specified in the input. DSA, DSB, and DSC are des¬ cribed in the input format description. One copy of the output pr : nt requested. A compiled listing of the subroutines of KRASH85 that are revised can be obtained. In this example, the list¬ ing is suppressed, (v = yes) The KRASI185 analysis system described herein is capable of achieving a balanced set of initial conditions only for the situation where the airplane starts completely off the ground. If any part of the airplane is initially in contact with the ground (any external springs initially del looted), the current code cannot balance the airplane. .2 1 MV i I he input data format is dc T'Ced in detail in this section and is shown in table 2-1 and figure 2-3. Table 2-1 gives a quick overview of the input data sequence, while figure 2-3 is a complete layout of the input data tormat. The data discussed in this section correspond to XYZ.DATA in Sec¬ tion 2.1. I’nless otherwise specified, all quantities are input to inch, pound, second, and radian units. Two formats are used for the majority of the data; 7KI0.0 lor lixed-point and sc ientific-notation input, and 15 for integers. As an exmaple of the former, the number 126.08 can be input in t iie loll ow i ng wavs: TABLE 2-1. KRASH INPUT FORMAT SEQUENCE Card Sequence No.(s) Required (R) or Optional (O) Identifier is Specified on Card No. General Description of Data 10-170 R - - Title, case control, initial conditions 200 R NM 40 Mass data 300 0 NNP 40 Node point data 400 0 NTAB 70 Acceleration transfer correspondence data 500 O NMSAV 80 Mass acceleration save data 600 O NNPSAV 80 Node point acceleration save data 700800 O NSP 40 External spring data 900 R NB 40 Internal beam data 1000 O NMTL 40 Material data 1100 O NPIN 40 Beam pinned-end and plastic hinge data 1200 O NUB 40 Unsymmetrical beam data (axial only) 1290-1500 O NOLED 40 Oleo type beam element data 1600 R - - Internal beam damping ratio 1700 O NO 40 Non-standard internal beam damping ratios 1800-1900 O NLB 40 Nonlinear beam data (KR tables) 2000 O MVP 40 Mass penetration volume definition 2100 O NORI 40 Dynamic Response Index (DRI) definitions E O NVCH 40 Volume change data O NVBM 50 Non-standard maximum positive beam deflections. 2400 O NVBMN 50 Non-standard maximum negative beam deflections. 2500 O NFBM 50 Non-standard maximum positive beam loads 2600 O NFBMN 50 Non-standard maximum negative beam loads 2700 O NSCV 60 Sign convention vectors for load-interaction curves 28003000 O NUC 60 Load-interaction curve data 3100 O NHI 50 Non-zero mass angular momenta, lift constant, or inertia cross products 3200 O NPH 50 Non-zero initial mass orientation Euler angles 3300 O NAERO 50 Mass aerodynamic data 3400-3500 O NACC 40 Mass acceleration or load input time-histories 3600 0 NKM 50 Direct input of beam stiffness matrices 3700-3800 0 NPLT 140 Position plot data 3900 0 NMEP 140 Mass point printer plot data 4000 0 NNEP 140 Node point printer plot data 4100 0 NBFP 140 Beam loads printer plot data 4200 0 NBDP 140 Beam deflection printer plot data 4300 0 NSTP 140 Beam stress ratio printer plot data 4400 0 NSEP 140 External spring load/deflection printer plot data 4500 0 NENP 140 Beam strain/damping energy printer plot data 4600 0 NDRP 140 DRI printer plot data 4700 R - - End of data set card FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET LOCKHEED-CALIFORNIA COMPANY ' |- A DIVISION OF LOCKHEED CORPORATION I PAGE L « imam l&siE]r:i IKZ/ll IPHn iuaal icaaui uwu, IM I15JI s^KVJwal ■ I IMI imi ifcii IdPkHI ir-n Heibnii lie >«i ■3BCJF C riropi^ I^TOEil griW VIHL3HH ^Inia ■■his |Mi» 111 ii l ■ikibb.i IKEIM piniiKjn nnineiga VIE3HPM SriMnl Imp— ■i IW KCT fmmmmmErt] isib&i 151 5« m H ■■1 m ■Ml Bi ■n BB BBI BB ^B BB ■B 191 I^H BB BB ■ ^b ^B ■1 bb BI ■ ■i B ^B ■ ■ bi ^B ■ BB IB ■ IB ■ BB ■ | BB ■ ■1 B BB ^B ^B ■ B ■ mm\ ■ ■Bi ■ 9 IB ■ B* n BI 113 119 M H M ez fgp*i n ■HI PK1 ■n 1*3 1-i ^B Cl bh C! BA BI H Ei u EJ PH BI 119 a M ii EJ ■PM BI BI ru in iK’JPXIfcrJI IU ■i Ul 19* IM BUS —■■■—m>a jlPHfc— Bid |WI til MCJR Pi^Jri nn»>iP]i vn»^JK9l nMiii mnni pnrai PCtLlI WMEII muni HfiRUI ■ Ml II BfelMSiEI B4»*4*1P?IBH Sti \ c* m| Pejmcjbibb ■«^9B fi9 [ jh$: bi—^rjgBga^^a Eia] ■hivafjrrnr^ln i^muh |Z^S^I^R^I£y|iMlL9fc3l KIPKII ifikicii Mil II II Kn»n iviiai.ii FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 2 OF 7) GENERAL' vRPOSE DATA SHEET lockheed-caufornia company 'j- A DIVISION OF LOCKHEED CORPORATION I PAGE o g o o o il IKII . &, i^huhes ■ K1K3B * s'.s tt4Cn»BME3jl ssssslas sail BSS 51 lE3|g |gi 'IE.? . nitsifil JpaiKinl ■ESimnal ■MjnPAnl Il7 teiESKPgEl IlKwZSI IESI iKrr^lHidi KfiRI ICWIIII id IfcJII MTCll iitaial iinrj lanSul tllTK wi! yaaiczii nrAHE^M! peitoj! PlUl KiM IVU1I ... K*iac£i maul |F WI!II r« OIWP-I iao>’ Kjjgg iani ■Hprara gL2H ■I ■1(7' I ivai IL'll ■mn »?*«H lorslsi i^i iii;i uni 1^1 IB 1 ^■j BB| ■HI imaai IHHI ■i IMI IHHI Ian hi HI jri !■■! \ma 'HI aii iaai a hi Si FJ HI It HI u HI I^HI Ian HI H! HI HI HI I^BI HI 1* HI n SI In Ira HI IHHI SI rS 51 H HI M HI ■a HI in 8 | H IflK ■■1 mi !■ n ■HI Cl ^■j ara HI In HI lin ■■a* HI tmm ^■1 ■■1 ■| Mil |l Zi lia wmi k( ■1 law MM HI !ni l f Ak v 1^M\ i^HI lei m\ |^HI HI a— —1 LOCKHEED* CALIFORNIA COME ANY «—— A DIVISION OF LOCKHEED CORPORATION I PACE FIGURE 2-3. KRASH85 INPUT FORMAT H ' V'J */* r Blank i •. > 1 u:;sns arc treated as zeros. When the F. format is used, the exponent oust he ri,;ht justi; ieJ in tile field. With the 15 integer lormat, the number r.;i i s t lie right just ified. The sequence numbers shown in columns 77 through 80 are onl\ tor re! ei'eiH'e purposes within this document. The actual data cards can have anv numbering scheme, or no numbers at all, as lone as the cards are in the proper order. I lie tel low in,', coordinate systems (figure 2-4) are establ ished to lac i 1 i - Lata the derivation of equations for the mathematical model. The input data description specifies the appropriate coordinate systems to be used. • (.round Coordinate System . - This is a right-handed coordinate system fixed in the ground with the origin at point 0 in figure 2-4. The x-axis is positive forward, the v-axis is positive to the right, and the /-axis is positive downward. The xy-plane (z = 0) corresponds to the ground surface. The ground coordinate system is considered an inertial coordinate system for writing the dynamic equations of motion. • Slope Coordinate System . - This is a right-handed coordinate system fixed in the ground with the origin at point 0 as shown in figure 2-4. The x-axis is positive forward up the slope, the y-axis is positive to the right, and the z-axis is positive downward and perpendicular to the slope. This coordinate system is the same as the ground coor¬ dinate system rotated through an angle 'beta', positive clockwise about the ground y-axis. The xy-plane represents a plane inclined at an angle 'beta' with respect to the horizontal ground plane. 'Beta' is a constant input angle that can range from zero to ninety degrees. • Airplane Coordinate System. - This is a left-handed coordinate system fixed with relation to the airplane with the origin at point H in fig¬ ure ,'-i. The x-axis is positive aft, the y-axis is positive to the left when looking forward, and the z-axis is positive upv T ard. The origin at point H corresponds to zero fuselage station (FS = 0) , zero buttline (BL = 0), and zero waterline (WL = 0) . This coordinate system is used only to input the location coordinates of the mass points and massless node points since the coordinates of the points are usually available in terms of fuselage station, buttline, and waterline. • Center-of-Gravitv Coordinate System . - This is a right-handed coordinate system fixed with relation to the airplane with the origin at the ve- hic'o c.g. , point 0. The x-axis is positive forward, the y-axis is positive to the right when looking forward, and the z-axis is positive downward. These axes are parallel to the airplane coordinate system axes. 2-17 • Mass Point Coordinate System . - Each mass point lias its own right-handed coordinate system fixed with relation to the mass point. The initial orientation of each of these coordinate systems is arbitrary and is specified by means of three input Euler angles for each mass point relating its initial orientation to the center-of-gravitv coordinate system since the inertia data are generally available about these axes and the three input Euler angles are zero. The mass point coordinate system is the system used to write Euler's equations of motion for each mass point. • Beam Element Coordinate System . - This is a right-handed coordinate system with the beam element x-axis along a straight line from the mass point at end '1' to the mass point at end "j". As the mass points move, the beam element coordinate system changes orientation so that the x-axis is always pointing from the mass point at end 'I' to the mass point at end '.I'. If the beam element connects massless node points which are offset from the mass points, then the beam ele¬ ment x-axis always points from the massless node point rigidly attached to the mass point at end * I.' to the massless node point rigidly attached to the mass point at end 'J'. The beam element y-axis and z-axis are mutually perpendicular. The direction of each is arbitrary and is defined internally within the program. The input data are prepared according to the beam element coordinate systems shown in figure 2-5 (page 2-46). The following is a detailed description of all the input data requirements. COORDINATE SYSTEM FIGURE 2-4. KRASH85 COORDINATE SYSTEMS KRASH* INPUT DATA CARD 0010: TITLE CARD # 1 DESCRIPTION : Defines an alphanumeric label which will appear as the first line of heading on each page of KRASH* printed output. FORMAT AND EXAMPLE: 01 2345678 1234567890123456789012345678901234567890123456789012345678901234567890I234567890 TITLE 1 SUBSTRUCTURE SECTION IMPACT STUDY 0010 FIELD CONTENTS Title 1 Alphanumeric Character String REMARKS: (1) Required data card; however, it may be blank. ‘ ' (2) All text material on this card is reproduced at the top of every output page and on every plot. CARD 0020 . TITLE CARD /2 DESCRIPTION: Defines an alphanumeric label which will appear as the second line of heading on each page _ ~~ of KRASH printed output. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 1 --34 567890123456789012345678901234 5678901 234 5678901234567890123456789012 8 34567890 TITLE2 INITIAL CONDITIONS: 27.5 FPS VERTICAL IMPACT ON RIGID SURFACE 0020 FIELD CONTENTS Title2 Alphanumeric Character String REMARKS: (1) Required data card; however, it may be blank. ‘ (2) All text material on this card is reproduced at the top of every output page and on every plot. *KRASH refers to KRASH85 in all subsequent input data sheets 2-20 KRASH INPUT DATA CARD 0030 : DUMMY CARD DESCRIPTION: Defines a numeric heading which will appear on each page of the KRASH printout of the — ~ input data deck echo. FORMAT AND EXAMPLE : 01 2345678 12345678901234567890123456789012345678901234567890123456789012345678901234567890 DUMMY 123456789012345678901234567890123456789012345678901234567890123456789012 0030 FIELD CONTENTS Dummy Numeric String REMARKS: (1) Required data card; however, it may be blank. " ' (2) Intent of this data card is to aid the user in verifying the field placement of the input data. 2-21 KRASH INPUT DATA CARD 0040 : KRASH MODEL SIZE PARAMETERS DESCRIPTION Defines the sizes of the various input parameter data sets for the KRASH model. FORMAT AND EXAMPLE: 01 2345678 I 234 5678901234 567890123456789012345678901234567890123456789012 3456789012 34 567890 FIELD CONTENTS NDRI NOLLO NACC NVCI1 Number of Mass Points Per 0200-Series Cards (Maximum Allowed is 80) Number of External Crushing Springs Per 0700/0800-Series Cards (Maximum Allowed is 40) Number of Beam Elements Per 0900-Series Cards (Maximum Allowed is 150) Number of Beam Element Nonlinear Degrees-of-Freedom Per 1800-Series Cards (Maximum Allowed is 180) Number of Massless Node Points Per 0300-Series Cards (Maximum Allowed is 50) Number of Beam Elements Having at Least One Degree-of-Freedom Pinned Per 1 100-Series Cards (Maximum Allowed is 150) Number of Axially Unsymmetric Beam Elements Per 1200-Series Cards (Maximum Allowed is 1 50) Number of DRI Beam Elements Per 2100-Series Cards (Maximum Allowed is 150) Number of Shock Strut Elements Per 1300 and 1400-Series Cards (Maximum Allowed is 20) Number of Enforced Acceleration Time History Tables Per 3400/3500-Series Cards (Maximum Allowed is 100 Input Tables. With a Total of 5000 Time Points) Reference Mass Point For Volume Penetration Calculations Per 2000-Series Cards (Maximum Allowed is I ) Number of Volumes For Occupiable Volume Change Calculations Per 2200-Series Cards (Maximum Allowed is 5 ) Number of Non-Standard Beam Element Materials Per 1000-Series Cards (Maximum Allowed IS 10) Number ol Beam Elements With Non-Standard Damping Ratios Per I 700-Series Cards (Maximum Allowed is 150) Requited data card. All entries are tight lustttied integers 'NM' and 'NB' must be nonzero Blank entiles are lead as zero See fable 2-1 lot a stnnmaiv ol model si/e parameters, format tot this card is 1415 REMARKS TABLE 2-2. PROGRAM SIZING CONSTANTS CONSTANT MAXIMUM VALUE DESCRIPTION NM 80 NUMBER OF MASSES NSP 40 NUMBER OF EXTERNAL SPRINGS NB 150 NUMBER OF INTERNAL BEAMS NLB 180 NUMBER OF NONLINEAR BEAM-DIRECTION COMBINATIONS (KR TABLES) NHI 80 NUMBER OF MASSES HAVING NON ZERO Hev,. Hey,. He z ,. I xyj . I yZj . I XZj . OR Fq 1 MVP REFERENCE MASS NUMBER FOR VOLUME PENETRATION CALCULATIONS NVCH 5 NUMBER OF VOLUMES FOR OCCUPIABLE VOLUME CHANGE CALCULATIONS NDRI 150 NUMBER OF DR1 BEAM ELEMENTS NMTL 10 NUMBER OF NON-STANDARD BEAM MATERIALS NACC 100 NUMBER OF INPUT ACCELERATION TIME-HISTORY TABLES (TOTAL NUMBER OF TIME POINTS = 5000) NVBM 150 NUMBER OF INTERNAL BEAMS HAVING NON-STANDARD MAXIMUM POSITIVE (NVBM) OR NEGATIVE (NVBMN) N’VBMN 150 DEFLECTIONS FOR BEAM RUPTURE. STANDARD VALUE = 100 (inches OF DEFLECTION AND radians OF ROTATION) NFBM 150 NUMBER OF INTERNAL BEAMS HAVING NON-STANDARD MAXIMUM POSITIVE (NFBM) OR NEGATIVE (NFBMN) M BMN 150 FORCES FOR BEAM RUPTURE. STANDARD VALUE = 1 E10 NPII 80 NUMBER OF MASSES HAVING NON-ZERO EULER ANGLES 4>, "■ e f- V M) 150 NUMBER OF INTERNAL BEAMS HAVING DAMPING RATIOS DIFFERENT FROM THAT SPECIFIED ON CARD 1600 NKM 150 NUMBER OF INTERNAL BEAMS FOR WHICH THE FULL 6x6 STIFFNESS MATRIX IS DIRECTLY INPUT NPIN 150 NUMBER OF INTERNAL BEAMS HAVING OTHER TH \\ FIXED-FIXED END CONDITIONS NNP 50 NUMBER OF MASSLESS NODE POINTS NUB 150 NUMBER OF UNSYMMETRICAL BEAMS NOLI 0 20 NUMBER OF SHOCK STRUTS KRASH INPUT DATA CARD OOSO : KRASH MODEL SIZE PARAMETERS AND CALCULATION FLAGS DESCRIPTION: Defines the sizes of the various input parameter data sets for the KRASH model and provides for beam element stress and/or failure data calculations. FORMAT .AND EXAMPLE: FIELD CONTENTS NVBM Number of Beam Elements Having Non-Standard Rupture Positive Deflections Per 2300-Series Cards (Maximum Allowed is 150) NFBM Number of Beam Elements Having Non-Standard Rupture Positive Forces Per 2500-Series Card (Maximum Allowed is 150) NVBMN Number of Beam Elements Having Non-Standard Rupture Negative Deflections Per 2400-Series Card (Maximum Allowed is 1 50) NFBMN Number of Beam Elements Having Non-Standard Rupture Negative Forces Per 2600-Series Cards (Maximum Allowed is 150) NKM Number of Beam Elements For Which 6x6 Stiffness Matrix is Directl) Input Per 3600 Series Cards (Maximum Allowed is 150) Mil Number of Mass Points Having Nonzero Aerodynamic Lift Constant. Angular Momenta, or Cross Products of Inertia Per 3100-Series Card (Maximum Allowed is 80) NPI1 Number of Mass Points Having Nonzero Euler Angles For Rotating the Mass Point or Body Coordinate System Relative to The Ccnter-of-Gravity Coordinate System Per 3200-Series Cards (Maximum Allowed is 80) NTOL1 Percent Allowable Total Energy Growth Above 100 Percent (Default Value is One (1) Percent) NTOL2 Percent Allowable Individual Negative Strain. Damping. Crushing and Friction Terms of Respec¬ tive Totals (Default V'alue is Ten (10) Percent) NTOL3 Percent Allowable Individual Mass Energy Deviation Above Zero Percent (Default Value Thirty (30) Percent NSC Flag For Beam Element Stress Calculation: 0 = No 1 = Yes NIC Flag For Preliminary Beam Element Failure Load and Deflection Calculations: 0 = No 1 = Yes NAI KO Number of Masses Having Aerodynamic Data Input Per 3300-Series Card (Maximum Allowed is 80) NBOMB Any Nonzero Input Will Override all Energy Growth Error Checks. Run Will Execute to Completion Regardless of Energy Calculations. REMARKS (1) Required data card, however it may be blank. (2) All entries are right justified mtegers. (3) Blank entries arc read as zero. (4) If any of the allowable errors in energy are exceeded, the analysis terminates automatically at that time, and summary tables and printer plots are generated. (5) Default values for NVBM and NVBMN are 100 inches or radians. Default values for NFBM and NFBMN are 1E10, lbs or in-lbs. ( 0 ) See Table 2-1 for a summary of mode! size parameters. (7) It is recommended that NIC = 1 be used each time if complete beam properties are input (0600-series cards). (8) Format for this card is 1415. 2-24 KRASH INPUT DATA CARD 0060 : KRASH MODF.L SIZE AND PROGRAM CONTROL PARAMETERS DESCRIPTION: Defines the si/.es of input parameter data sets for the KRASH model and controls the output of graphics information and specifies the type of initial conditions to be used FORMAT AND EXAMPLE: 01 2 3 45678 12345678901234567890123456789012345678901234S67890123456789012345678901234567890 NSCV NLIC I NWRGRA NBAL ICD ICITF.R 1 16 0 5 1 1 0060 FIELD CONTENTS NSCV NLIC NWRGRA NBAL ICD ICITER Number of User-Specified Sign Convention Vectors,Per 2700-Series Cards. To Be Used in Conjunction With Load-Interaction Curve Data. (Maximum Allowed is 10) NSCV May be Zero. Number of Load-Interaction Curves Per 2800/3000-Series Cards (Maximum Allowed is 40) Parameter Which Governs Whether Graphics Data For Postprocessing is Written to The User’s Data File. NWRGRA = 0 Results in No Data Being Written to The User's File. Any Nonzero Input Will Result in Mass and Node Point Displacement Time-History Data. Plus Load-Interaction Time-History Data (if NLIC /= 0). being written to the user's data file, in data set DSC. Defined in JCL. If MSC/NASTRAN is To Be Used For a Static Solution. Then NBAL is The Mass Number That is Constrained to Have Zero Deflections and Rotations. Parameter Which Determines Whether an Additional Data Set of Mass and Node Point Static Deflections is To Be Read Following the Basic Input Data Set. ICD = 0 Means That The Additional Data Set is Not Read. Any Nonzero Input Causes The Program to Read The Initial Deflection Data. Parameter Which Determines Whether The Initial Mass and Node Point Deflection Data (ICD £0) is Used To Modify The Input Airplane Coordinates For The Mass and Node Points. ICITER = 0 Means The Initial Static Deflection Data is Not Used to Modify The Mass Coordinates: i.c.. The Airplane is Left in Its Undeformed Position. Any Nonzero Value of ICITF.R Results in The Input Mass Coordinates Being Modified to Reflect The Initial Static Deflections, i.e.. The Airplane Assumes The Deformed Shape Corresponding to The Initial Static Load Condition. REMARKS: (1) Required data card , however, it may be blank. (2) All entries are right justified integers. (3) See Section 3 1 for a discussion of the load-interaction curve data; Section 2.1 for a discussion of initial conditions. (4) Format for this card is 615. 2-25 KRASH INPUT DATA CARD 0070: ACC LLP RATI ON TRANSFER CONTROL PARAMETERS DESCRIPTION: Defines number of time-history tables of mass accelerations to be used. FORMAT AND EXAMPLE: 01 2345678 I 23456 78901234S678901234567890123456789012345678901 2345678901 2345678901 234 567890 FIELD CONTENTS (C’SIN > Not Used (RNIN) Not Used NTAB Number of Acceleration Time-History Tables to Be Used From Previous Run. Using Data Set Identified as DSA in JCL. Maximum Allowed is 100. REMARKS: (1) Required data card; however, it may be blank. .. ^ 2 ) NTAB is input as a right justified integer. (3) See Section 3.2 for a discussion of acceleration transfer procedures. (4) Format for this card is(A6, 4X, A10, 5X, 15). KRASH INPUT DATA C ARD 0080: ACCELERATION TRANSFER CONTROL PARAMETLRS DESCRIPTION Defines data for saving mass and mode point accelerations for later use as input data in another run. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 123456789012345678901234567890123456789012345678901234567890 7 8 12345678901234567890 B23BS3 (RNOl'T) NMSAV NNPSAV NDTSAV NWRFLG NDTGRA 6 3 10 1 20 0080 HELD CONTENTS (CSOUT) (RNOUT) NMSAV NNPSAV NDTSAV NWRFLG NDTGRA Not Used Not Used Number of Masses For Which Selected Acceleration Data Will he Saved in Data Set DSB (Identified in JCL), as Specified on 500-Series Cards (Maximum allowed is SO) See Remark (5). Number of Node Points For Which Selected Acceleration Data Will be Saved in Data Set DSB (Identified in JCL). as Specified on 600-Series Cards (Maximum Allowed is 50) See Remark (5) Multiple of Integration Time Interval DT at Which Acceleration Data Will be Saved. See Remark (4) Parameter Governing Whether Selected Acceleration Data Will be written to User's Data File as Data Set DSB. Any Nonzero Value Will Cause The Data to be Written: NWRFLG = 0 Will Cause The Data Not to be Written. Regardless of The Remaining Input Parameters on This Card. Multiple of Integration Time Interval DT at Which Mass and Node Point Displacement Data Will be Written to User's Data File as Data Set DSC (Identified in JCL). This Data is Used For Graphics Postprocessing. NWRGRA on Card 0600 Must be Nonzero For This Data to be Written as DSC in User’s Data File. NDTGRA Also Defines The Time Interval For Saving Load-Interaction Data. For The Load Interaction Data, if NWRGRA on Card 0060 is Zero. The Print Output Will Still Contain Time-Histories of All Load Interaction Output Data. If it is Desired to Save This Data in Data Set DSC For Postprocessing. Then NWRGRA Must be Input Nonzero. See Remark (4). REMARKS: (1) Required data card; however, it may be blank. (2) All entries are right justified integers. (3) See Sections 3 • I and 3 2 for discussions of load-interaction curve data and acceleration transfer control and graphics data. (4) Both NDTSAV and NDTGRA must be chosen so that less than 100 time cuts are saved for each response quantity. This is satisfied if NDTSAV \ _. IAV i L TMAX ' int ^ / 100 * DT NDTGRA/ IUU (5) The total number of response quantities saved (total number of nonzero MI T's and NPFL's on 0500 and 0600 Series ( aids) must be less than 100. (0) Format for this card is(A6, 4X. AI0, 51 10). 2-27 KRASH INPUT DATA CARD 0090 : RESTART CONTROL PARAMETERS DESCRIPTION : Defines the identifiers of a previously checkpointed KRASH case and the simulation time from which the KRASH analysis will be restarted. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 1234567890123456789012345678901234S6789012345678901234567890I2345678901234567890 CASEIN >2 RUNIN MSECIN * OLEO 1 40 _ 0090 FIELD CONTENTS CASEIN Alphanumeric Identifier of Checkpointed Case (Maximum of Eight Characters, Left Justified) RUNIN Numeric Identifier of Checkpointed Case MSECIN Restart Time - Milliseconds REMARKS (1) Required data card, however, it may be blank. (2) All numeric entries are right justified integers. (3) Previously checkpointed case must be resident on mag tape and be accessed via JCL. (4) Restart time must be included in the KRASH analysis of the previously checkpointed case. (5) Only nonblank when using restart capability to initiate from a preceding analysis that has been saved. (6) Format for tliis card is(A8. 2X. 6110). 2-28 KRASH INPUT DATA CARD 0100: CHECKPOINT CONTROL PARAMETERS DESCRIPTION : Defines indentifiers and simulation times for the current KRASH case to checkpoint the analytical results for future restarts. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 1 2 34 56 7890123456 7 89012345678901 234S678901234567 8901 234567 89012345678901 2 8 34567890 CASEOUT ►:< RUNOUT MSCOUT(l) MSCOUT(2) MSCOUT (5) OLEO □ 2 40 80 100 120 150 □ 0100 FIELD CONTENTS CASEOUT Alphanumeric Identifier (Maximum of Eight Characters, Left Justified) RUNOUT Numeric Identifier MSCOUT1 Analysis Times at Which Results Will be Saved - Milliseconds REMARKS: (1) Required data card; however, it may be blank. (2) All numeric entries are right justified integers. (3) JCL must provide mag tape on which results will be saved. (4) Only nonblank when data are to be saved. A maximum of five times can be saved per analysis. (5) Format for this card is(A8. 2X, 6110.0). -29 KRASH INPUT DATA CARD 0110: PARAMETERS FOR NUMERICAL INTEGRATION, PLOWING FORCE, ACCELERATION FILTER, AND KRASH EXECUTION MODE DESCRIPTION: Defines print control, numerical integration time step, analysis time, plowing force time, acceleration filter cutoff frequency, and KRASH execution mode (airplane model and impact condition symmetry). FORMAT AND EXAMPLE: 1 0 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 DP/DT DT TMAX PLOWT FCUT RUNMOD x IK 100 0 00001 0 120 100.0 1.0 _ 0110 FIELD CONTENTS DP DT DT TMAX PLOW! FCL'T RL'NMOI) REMARKS Multiple of Numerical Integration Time Interval at Which Output Will be Printed, Right Justified Interger Fixed Time Step For Numerical Integration - Seconds Maximum Analysis Time - Seconds Analysis Time at Which Plowing Forces Cease - Seconds Cutoff Frequency of First-Order Filter Applied to Mass Point Translational Accelerations - Hertz (E10.0 Format) Flag to Control the Mode of Program Execution as Follows: RUNMOD INPUT DATASET DATA SET ANALYZED AIRPLANE MODEL IMPACT CONDITIONS 0 . Full Airplane Full Airplane Unsymmetrical Unsymmetrical 1 . Half Airplane Half Airplane Symmetrical Symmetrical -> * Half Airplane Full Airplane Symmetrical Unsymmetrical *See remark (5 ) (1) Required data card. (2) 'DP/DT', ‘DT\ 'TMAX'. and ‘RUNMOD’ are required inputs. (3) Blank entries are read as zero. (4) Entries requiring scientific notation (X.XEXX) should be right justified. (5 ) For RUNMOD = 2. image mass number = 100 + mass number. (b) Suitable values tor 'DT' range from 0.00001 to 0.001 seconds. A rule of thumb for selecting a final integration value is the following: DT S 0.01 Max. Computed Beam Frequency (Hz). (7) Nonzero plowing forces act from time = 0 to time = ‘PLOWT . For time > PLOWT the plowing forces are set to zero. (8) Suitable values for ‘FCUT’ range fiom fifty to eighty-five percent of the actual test filter cutoff frequency. Eighty-five percent is commonly used. (O) Foimat toi tills card is ( I 10. 51:1 0.0). KRASH INPUT DATA CARD 0120 : VARIABLE INTEGRATION PARAMETERS DESCRIPTION: Define parameters for numerical integration with variable time step. FORMAT AND EXAMPLE: o i : 1 2 345t»“'S < >01 2345678901 3 4 5 6 7 8 23456789012345678901234567890123456789012345678901234567890 IV A R EL EU RATMIN RATMAX x ft 1 0 01 0.10 0 6 2.0 _ 0120 FIELD IVAR I L IT RATMIN RATMAX REMARKS CONTENTS Flag For Type of Numerical Integration With Variable Time Step as Follows (Right Justified Integer): IVAR TYPE OF NUMERICAL INTEGRATION WITH VARIABLE TIME STEP 0 None 1 Tolerance Based on Six Linear and Angular Velocities of Each Mass Point "1 Tolerance Based on Energy Maximum Tolerance Minimum Tolerance Integration Time Step Factor if Tolerance > ‘EU' Integration Time Step Factor if Tolerance < ‘EL’ (1) Required data card, but it should be blank as the variable integration algorithm is not currently operational. (2) Blank entries are read as zero. (3) Format for this card is (l 10. 4E 10.0). KRASH INPUT DATA CARD 0130 : PRINT OUTPUT CONTROL DESCRIPTION: Defines flags to control the printout of results, KRASH model size parameters, and allowable errors in energy for terminating the analysis. FORMAT AND EXAMPLE: KRASH INPUT DATA CARD 0140: PRINTER PLOT CONTROL PARAMETERS DESCRIPTION: Defines the type and number of time history printer plots and defines the number of mass „ point position (structure deformation) printer plots. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 ' X I 234 56"X9012 3456'K9()|234567X9012345678901234 567X90123456'890I 2 34 567X9012 34 567X90 NMF:P NNF.P NBFP NBDP NSTP NSEP NENP ndrpI NPLT NPFCT 1 i- 21 0 3 0 0 0 2 1_ 1 2 20 0140 FIELD CONTENTS NMEP Number of Mass Points Having Time History Printer Plots Per 3900-Series Cards NNEP Number of Massless Node Points Having Time History Printer Plots Per 4000-Series Cards NBFP Number of Beam Elements Having Load Time History Printer Plots Per 4100-Series Cards NBDP Number of Beam Elements Having Deflection Time History Printer Plots Per 4200-Series Cards NSTP Number of Beam Elements Having Stress Time History Printer Plots Per 4300-Series Cards NSEP Number of External Crushing Springs Having Time History Printer Plots Per 4400-Series Cards NENP Number of Beam Elements Having Strain and/or Damping Energy Time History Printer Plots Per 4500-Series Cards NDRP Number of DRI Mass Points Having Time History Printer Plots Per 4600-Series Cards NPLT Number of Mass Point Position (Structure Deformation) Printer Plots Per 3700/3800-Series Cards NPFCT Print Time Factor For Which Mass Point Position (Structure Deformation) Plots Are Generated REMARKS (1) Required data card; however, it may be blank. (2) All entries are right justified integers. (3) Blank entries are read as zero. (4) Blank or zero entries do not generate printer plots. (5) Mass position plots occur at time = 0. and at intervals equal to NPFCT \ DP DT \ DT. (6) Format for this card is 1015, 2-33 KRASH INPUT DATA CARD 0150: INITIAL AIRPLANE UNEAR VELOCITIES DESCRIPTION . Defines the initial airplane linear velocity components with respect to the ground coordinate system. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 XGDOT YGDOT ZGDOT x x ixr * 0.0 0.0 360.0 _ 0150 FIELD CONTENTS XCDOT Initial Fore-and-Aft Velocity of Airplane, Positive Forward YGDOT Initial Lateral Velocity of Airplane, Positive Right ZGDOT Initial Vertical Velocity of Airplane, Positive Down REMARKS: (1) Required data cards; however, it may be blank. (2) Velocity units are inches per second. (3) Blank entries are read as zero. (4) Entries requiring scientific notation (X.XEXX) should be right justified. (5) Format for this card is 3E 10.0. 2-34 KRASH INPUT DATA CARD 0160: INITIAL AIRPLANE ANGULAR VELOCITIES DESCRIPTION : Defines the initial airplane angular velocity components with respect to the ground coordinate system. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 FIELD CONTENTS PPR Initial Airplane Roll Velocity, Positive Right Wing Down QPR Initial Airplane Pitch Velocity, Positive Nose Up RPR Initial Airplane Yaw Velocity, Positive Nose Right REMARKS: (1) Required data card; however, it may be blank. (2) Angular velocity units are radians per second. (3) Blank entries are read as zero. (4) Entries requiring scientific notation (X.XEXX) should be right justified. (5) Format for this card is 3E10.0. KRASH INPUT DATA CARD 0170 MISCELLANEOUS AIRPLANE INITIAL CONDITIONS DESCRIPTION Defines the initial airplane attitude Euler angles and the initial airplane linear position with respeet to the ground coordinate system and defines the ground plane slope angle. FORMAT AND EXAMPLE: 0 1 1234567890 2 3 4 5 6 7 8 1 2 3456789012345678901 2345678901234567890123456789012345678901234567890 PHIPR THEPR PSIPR XGIN ZGIN RHO 8 0 0 0.001 0 0 0.0 0 0 45.0 1.1463F.-07 0170 FIELD CONTENTS PH1PR Initial Airplane Roll Euler Angle, Positive Right Wind Down Radians THEPR Initial Airplane Pitch Euler Angle, Positive Nose Up - Radians PS1PR Initial Airplane Yaw Euler Angle. Positive Nose Right - Radians XCiIN Eore-and-Aft Distance of Airplane Initial CG Position Relative to the Basic Position Calculated in the Initial Condition Subroutine, Positive Aft - Inches ZG1N Vertical Distance of Airplane Initial CG Position Relative to the Basic Position Calculated in the Initial Condition Subroutine. Positive Up - Inches BETA Ground Plane Slope Angle, Positive Up - Degrees RHO Air Density Used for Calculating Aerodynamic Loads (NAERO £0). Pound-Sec'/ln 4 REM ARKS (1) Required data card; however, it may be blank. (2) Blank entries are read as zero. (31 Normally. ‘XGIN' and ‘ZGIN’ are input as zero and the KRASH initial conditions subroutine positions the airplane relative to ground. (4) If it is desired to have the airplane impact only on the slope and not on the horizontal ground, a large value of ZGIN may be input (1000 inches). This will move the airplane upward ZGIN above the horizontal ground, and simultaneously move it forward so that it is almost contacting the slope. The normal initial position for the airplane is wedged into the juncture of the horizontal ground and the slope as explained in Volume 1, Section 1.3.1 : (5) Values of ‘BETA - range from zero to ninety degrees (horizontal to vertical impact surfaces). (6) Entries requiring scientific notation (X.XEXX) should be right justified. (7) If NSP = 0 (no external springs), ZGIN is the distance from the ground plane to the airplane CG. positive up. (8) Formats for this card is 7E10.0. (CRASH INPUT DATA CARDS 0200: MASS POINT DATA DESCRIPTION: Defines the weight, location coordinates, and mass moments of inertia for each of the mass points in the (CRASH model. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 123456 78<)01234567 89012345678901 234567890123456789012345678901 2345678901 2 8 34567890 WGT XDP YDP ZDP XI YI ZI ID 103.0 50 0 20.0 33.0 12.5 3.7 12.5 a 0200 FIELD CONTENTS WGT XDP YDP 2DP XI Yl 21 ID REMARKS: Weight - Pounds Fuselage Station Coordinate, Positive Aft - Inches Buttline Coordinate, Positive Left - Inches Waterline Coordinate, Positive Up — Inches Roll Mass Moment of Inertia - Inch * Pound * Second**2 Pitch Mass Moment of Inertia - Inch * Pound *Second**2 Yaw Mass Moment of Inertia - Inch * Pound * Second**2 Mass Point Number (1) ‘NM’ on card 0040 specifies the number of these cards for input. (2) The order of these cards determines the mass point number. (3) Blank entries are read as zero. (4) The location coordinates are defined in a left-handed coordinate system. (5) At least one of the three mass moments of inertia must be nonzero. (6) Mass moment of inertia cross products may be defined on the 3100-series of cards. (7) Entries requiring scientific notation (X.XEXX) should be right justified. (8) Mass point number (ID) must be greater than zero or less than 100. Mass numbers must be unique and can be input in any order. If ID for any mass point is left blank, all mass points will automatically be numbered sequentially in the order of input. (9) For RUNMOD = 2, the Image mass point number will equal the mass point number plus 100. (10) Formats for this card is 7E10.0, 12. 2-37 KRASH INPUT DATA CARDS 0300: MASSLESS NODE POINT DATA DESCRIPTION: Defines for each of the massless node points in the KRASH model the location coordinates - and the mass point number to which each is rigidly attached. FORMAT AND EXAMPLE: 01 2345678 I 2 34 56 78901234 56789012 3456 78901 234 56789012345678901 234567890123456789012 34567890 MNP INP XNPDP YNPDP ZNPDP >< x s 1 12 wmm mmn _ 0300 FIELD CONTENTS MNP Massless Node Point Number (Right Justified Integer) INP Mass Point Number (Right Justified Integer) XNPDP Fuselage Station Coordinate, Positive Aft - Inches 'I'NPDP Buttline Coordinate, Positive Left - Inches ZNPDP Waterline Coordinate,Positive Up - Inches REMARKS: (1) Optional data card(s). (2) ‘NNP’ on card 0040 specifies the number of these cards for input. (3) ‘MNP’ and ‘INP’ must be nonzero. (4) Blank entries are read as zero. (5) The massless node point number is determined by taking each mass point and numbering the node points attached to it 1, 2. 3,... etc. There is no limit on the number of node points that may be connected to a single mass point. (6) The location coordinates are defined in a left-handed coordinate system. (7) User should not place a node point on the center line for a RUNMOD = 2 condition. Program will not generate a connection across this point. User can place node point slightly off center, if necessary. (8) Generally used to model regions wherein rigid connections exist (i.e.. seat. engine) or where multiple behavior is being represented by different elements. (9) Entries requiring scientific notation (X.XEXX) must be right justified. (10) Format for this card is (215,3E10.0). 2-38 KRASH INPUT DATA CARDS 0400 : ACCELERATION TRANSFER DATA DESCRIPTION: Defines the correspondence between mass/node point numbers from a previous model for ——- which acceleration data was saved, and the current model which is to use the acceleration data as input forcing functions. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ISNEW (MSNEW) LSNEW ISOLD MSOLD LSOLD TSH 3 4 6 3 ■D .003 0400 FIELD CONTENTS ISNEW Mass Number in Current (New) Model That Will be Driven by an Acceleration Table Saved in Data Set DSA (defined in JCL) (MSNEW) Not Used (Coding Does Not Allow Driving a Node Point With an Input Acceleration) LSNEW Direction for Which Table Read From Data Set DSA Will Drive Mass ISNEW LSNEW: 1 = XACCEL 4 = PDOT 2 = Y ACC EL 5 = QDOT 3 = ZACCEL 6 = RDOT ISOLD Mass Number in Previous (OLD) Model. The Acceleration From Which Will be Used to Drive Mass ISNEW in The Current Model MSOLD Node Point Number in Previous (OLD) Model. Coding Allows Driving a Mass in The Current Model With an Acceleration From a Node Point in The Previous Model [.SOLD Direction of Acceleration Saved in Prior Model to be Used to Drive the Current Model. It is Not Necessary for LSOLD = LSNEW: i.e.. an XACCEL From a Previous Model Can Drive a ZACCEL in The Current Model LSOLD: I = X \CCEL 4 = PDOT 7 = XACC FILTERED 2 = YACCEL 5 = QDOT 8 = YACC FILTERED 3 = ZACCEL 6 = RDOT 9 = ZACC FILTERED TSI 1 Time Shift Applied to Data From Previous Model (Stored in DSA) Before Using in Current Model. This Allows User to Zpply a “Downstream" Response From Previous Model as Input to The Current Model. Which Starts at t = 0 'NEW' = 'OLD ’ TSH REMARKS: (1) Optional data card(s). (2) NTAB on card 0070 specifies the number of these cards for input. (3) Data set DSA. generated from a previous run. must be in the user's data file in order to use the acceleration transfer data. The actual data set name for DSA is specified in the JCL. (4) A different TSII can be specified for each table used. (5) Filtered accelerations from a previous model can be used to drive the current model. (LSOLD = 7.8 or 9). (6) Format for this card is (615. IE 10.0). KRASH INPUT DATA CARDS 0500 : MASS ACCELERATION SAVE PARAMETERS DESCRIPTION : Defines mass numbers and directions for saving acceleration time-history data. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 JBS [ ISAV Ml LI Ml 1.2 MIL3 MFL4 MILS MFL6 ! _ i MFL7 MFL8 MFL9 15 _° 1 0 1 M 0 m 0 0500 HELD CONTENTS ISAV Mass Number For Which Acceleration Data From Current Run Will be Stored in User's Data File in Data Set DSB MFL1 - Flags Defining For Which Directions (1-9) Acceleration Date is to be Saved in Data Set DSB. MFL9 Input Either 1 or 0 for Each Item; 1 Denotes Save The Acceleration Time-History For The Indicated Direction. Directions 1 -9 Correspond to The Description of LSOLD on Cards 0400. REMARKS: (1) Optional data card(s). (2) NMSAV on Card 0080 specifies the number of these cards for input. (3) Date set DSB is specified in the JCL. (4) The acceleration data is saved at time intervals of NDTSAV, specified on Card 80. (5) NWRFLG on Card 80 must be nonzero to write the acceleration data into date set DSB. (6) Format for this card is (5X, 1015). KRASII INPUT DATA ( ARDS OoOO NODI: POINT ACCF DERATION SAVL PARAMLT1 RS DESCRIPTION : Defines node point numbers and directions tor saving acceleration lime-liistorv. data. FORM AT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 1 2345678901234 5678901234 5678901234S678901234S6789012345678901 2 34567 8901234S67890 NPt-Ll NPI 1 4 NPFL7 NPIL8 NPI L9 □ ■s 0 _ l 0 i 0 1 ! ’1 0 ■1 0 0600 III: LD CONTENTS ISAY. MNPSAV NPIT.I NIM T» Mass and Node Point Number lor Which Acceleration Data From Current Run Will be Stored in User's Data File in Data Set DSB Flags Defining for Which Directions (1-9) Acceleration Date is to be Saved in Data Set DSB. Input Either I or 0 for Each Item; 1 Denotes Save The Acceleration Time-History for The Indicated Direction. Directions I -9 Correspond to The Description of I.SOLD on Cards 0400 RL MARKS: (1) Optional data card(s). (2) NNPSAV on Card 0080 specifies the number of these cards for input. (3) Date set DSB is specified in the JCL. (4) The acceleration data are saved at time intervals of NDTSAV. specified on Card 80. (5) NWRFLG on Card 80 must be nonzero to write the acceleration data into date set DSB. (b) Format for this card is I 115. 2-41 KRASH INPUT DATA CARDS 0700: EXTERNAL CRUSHING SPRING PARAMETERS DESCRIPTION: Defines the attach point. direction, length, ground coefficient of friction, bottoming spring rate, plowing force, and ground flexibility for each of the external crushing springs in the KRASH model. FORMAT AND EXAMPLE: 0 1 2 1 2 3 4 5 6 7 8 345678901234567890123456789012345678901234567890123456789012345678901234567890 ■ K XLBAR XMU XKE FPLOW GFLEX ITIRE ss ►:< L, a 3 0.3 20000.0 0 0 0.0 ■D _ 0700 FIELD CONTENTS M Massless Node Point Number (Right Justified Integer) I Mass Point Number (Right Justified Integer) K Degree-of-Freedotn in Which External Crushing Spring Acts Where 1,2,3 Correspond to the X. Y, Z Directions in the Mass Point Coordinate System (Right Justified Integer) XLBAR Free Length of Spring Either Positive or Negative in the Mass Point Coordinate System Inches XMU Impact Surface Coefficient of Friction. Values of Between 0.35 to 0.60 are Appropriate For Structure to Ground Contact. XKE Bottoming Spring Rate - Pounds Per Inch FPLOW Plowing Force - Pounds GFI.EX Impact Surface Flexibility - Inches Per Pound ITIRF Defines spring that remains normal to contact surface REMARKS: (1) Optional data card(s). ( 2 ) 'NSP' on card 0040 specifies the number of these cards for input. (3) Blank entries are read as zero. (4) The free length of the external crushing spring is arbitrary;however, the value generally represents the actual depth of the crushable structure. (5) A value of zero for the impact surface flexibility (GFLEX) represents a rigid surface. A flexibility value of 0.00036 in/lb is an approximate representation in KRASH for soil, having a CBR-4 and moisture content ot4.30 percent. (6) Entries requiring scientific notation (X.XEXX) must be right justified. (7) If (TIRE = I external spring remains normal to contact surface. Use only for tire representation in K = 3 direction. If Beta > 0 tire spring remains normal to sloped surface. Not coded to account lor transition from flat to sloped surface. (8) Format for this card is (12.13. 15. 5EI0.0, 15). KRASH INPUT DATA CARDS 0800: EX TERNAL CRUSHING SPRING LOAD-DEFLECTION AND DAMPING PARAMETERS DESCRIPTION : Defines four deflection points, two load values and one damping value for each external crushing spring in the KRASH model. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 1 23456 7 8901234 567 8901 234567890I234S678901234567 890123456789012345678901234567890 SI SA SB SF FSPOI FSPDF CDAMP 0 1 1.0 3.5 5.0 10000.0 25000.0 .08 _ 0800 FIELD CONTENTS SI SA SB SF FSPOI FSPOF CD.AMP Deflection Point at Which First Linear Region Ends and First Nonlinear Region Begins - Inches Deflection Point at Which First Nonlinear Region Ends and Second Linear Region Begins — Inches Deflection Point at Which Second Linear Region Ends and Second Nonlinear Region Begins - Inches Deflection Point at Which Second Nonlinear Region Ends and Linear Bottoming Begins Inches Constant Load Between Deflection Points SI and SA - Pounds Constant Load Between Deflection Points SB and SF - Pounds Critical Damping Ratio. Acceptable Range is .02 to .10 REMARKS : (1) ‘NSP’ on card 0040specifies the number of these cards for input. (2) These load-deflection cards must be ordered to correspond with the 0700-series cards of externa] crushing spring data. (3) The general shape of the load-deflection curve is as follows: LOAD POUNDS BOTTOMING SPRING. 2-43 KRASH INPUT DATA CARDS 0800: EXTERNAL CRUSHING SPRING LOAD-DEFLECTION AND DAMPING PARAMETERS (Continued) (4) External spring damping in program KRASH is compi ed as: 2 * CDAMP* /(FSPOI/SI) * WGT / 386.4 where WGT is the weight for mass i. (5» Entries requiring scientific notation (X.XEXX) should be right justified. ((■>) Format for this card is 7E10.0. KRASH INPUT DATA C ARDS 0900: BEAM ELEMENT PROPERTIES DESCRIPTION: Defines the end points and cross-sectional properties for each beam element in the KRASH model. FORMAT AND EXAMPLE 01 2345678 12345678901234567890123456789012345678901234567890123456789012345678901234567890 yi D D E AA XJ IYY IZZ XIQ Z1 rn Z2 MC ■ E B E 0.5 0.0 3.67 1.54 0.0 0.0 0 0 4 900 FIELD CONTENTS M Massless Node Point Number At End “I” (Right Justified Integer) I Mass Point Number At End “I” (Right Justified Integer) N Massless Node Point Number at End “J" (Right Justified Integer) J Mass Point Number At End “J" (Right Justified Integer) AA Cross-Sectional Area - Inches**?. XJ Torsional Stiffness Inertia - Inches**4 IYY Cross-Sectional Area Moment of Inertia About Beam Element Y-Axis For Bending In X-Z Plane - Inches**4 IZZ Cross-Sectional Area Moment Of Inertia About Beam Element Z-Axis For Bending In X-Y Plane - Inches**4 XIQ Cross-Sectional Shape Factor Relating Torsional Shear Stress To The Applied Moment - 1/Inches**3 Z1 Distance From The Neutral Axis To The Extreme Fibers In The Beam Element Z-Direction - Inches Z2 Distance From The Neutral Axis To The Extreme Fibers In The Beam Element Y-Direction Inches MC Material Code Number (Right Justified Integer) REMARKS (1) "NB" on card 0040 specifies the number of these cards for input. (2) Blank entries are read as zero. (3) At least one beam element must be defined. (4) The order of these data cards determines the beam element number. (5) It “XJ" is input as zero, KRASH will automatically compute a value for “XJ" as the sum of "IYY" and “IZZ". (6) The beam element coordinate system depends on the geometric orientation as shown in Figure 2-5. (7) "XIQ". "Z1", and "Z2" are used only for stress calculations (See Section 1.3.17 in Volume I). (8) The torsional stress parameter “XIQ" is equal to the shape factor “l/Q” used in Roark’s formulas for stress and strain (Reference 4). (9) KRASH has ten standard materials internally defined as shown in Table 2-2. (10) Entries requiiing scientific notation (X.XEXX) should be right justified. (11) Formal for this card is (2(12.13), 5E10.0, 2F5.0,12). CENTER-OF-GRAVITY COORDINATE SYSTEM (TY?) FORE-AND-AFT BEAM ELEMEN" VERTICAL BEAM ELEMENT (use for beam inclined at angle <30 degrees from vertical) 3EAM ELEMENT INCLINED IN X-2 PLANE (use for beam inclined at angle > 30 degrees from vertical) 3EAM ELEMENT INCLINED IN Y-Z PLANE (use for beam inclined at angle > 30 degrees from vertical) FIGURE 2-5. BEAM ELEMENT COORDINATE SYSTEM ORIENTATIONS TABLE 2-3. STANDARD MATERIAL PROPERTIES MATERIAL MODULUS OF ELASTICITY (PSI) MODULUS OF RIGIDITY (PSD TENSILE STRESS (PSI) COMPRESSIVE STRESS (PSD SHEAR STRESS (PSI) 4130 STEEL 30.0E6 11.0E6 75000 75000 37500 6150H STEEL 30.0E6 11.0E6 205000 205000 80000 300-SERIES STAINLESS STEEL 28.0E6 12.5E6 70000 46000 36000 2024 T3 ALUMINUM 10.5E6 4.0E6 47000 39000 22000 6061-T3 ALUMINUM 10.0E6 3.8E6 35000 34000 17000 819S-T4 CAST ALUMINUM 10.0E6 3.8E6 16000 16000 17000 LOW MODULUS MATERIAL 1.0E6 0.4E6 16000 16000 17000 ZERO TORSION MATERIAL 1.0E6 0.0 16000 16000 17000 DRI SPINE (MAN) 1.0E6 0.4E6 16000 16000 17000 DRI SPINE (DRI) 1.0E6 0.4E6 16000 16000 17000 KRASH INPUT DATA CARDS 1000: NON-STANDARD MATERIAL PROPERTIES DESCRIPTION : Defines non-standard material properties for beam elements in the KRASH model. FORMAT AND EXAMPLE 0 1 1 3 4 5 6 7 8 123456'8901234567890123456789012345678901234567890123456789012345678901234567890 MC S3 EE GG STENS SCOMP SHEAR x * 11 10.3E06 3.9E06 3S000.0 34000.0 17000.0 _ 1000 FIELD MC EE GG STENS SCUMP SHEAR CONTENTS Materia] Code Number. MC = 11-20 (Right Justified Integer) Modulus Of Elasticity - Pounds Per Inch**2 Modulus Of Rigidity - Pounds Per Inch**2 Tensile Yield Stress - Pounds Per Inch**2 Compressive Yield Stress - Pounds Per inch**2 Shear Stress - Pounds Per Inch**2 REMARKS (1) Optional data card(s). (2) ■‘NMTL" on card 0040 specifies the number of these cards for input. (3) Blank entries are read as zero. (4) The yield stress properties are required when stress calculations are desired. (5) The standard materials available in KRASH are listed in Table 2-2. (6) Entries requiring scientific notation (X.XEXX) should be right justified. (7) Format for this card is (15. 5X, 5E10.0). KRASH INPUT DATA CARDS 1100 : BEAM ELEMENT PINNED END CONDITIONS DESCRIPTION : Defines the end points and the degrees-of-freedom for the beam elements with pinned “ ~ end conditions in the KRASH model. FORMAT AND EXAMPLE: 01 2 3 4 5 6 7 s 12345678901234567X9012345678901234567X901234567X90123456789012345678901234567X90 83 ■ IS E PY1 PZI PYJ PZJ SF35 SF26 SF35J SF26J >:< ■ E B E 0 1 0 1.0 1.5 1.2 1.0 _ 1100 FIELD CONTENTS M Massless Node Point Number At End “1" I Mass Point Number At End “I" N Massless Node Point Number At End “J*” J Mass Point Number At End “J'" PY1 Pin Flag For Bending Moment About Beam Element Y-Axis At End “I” PZI Pin Flag For Bending Moment About Beam Element Z-Axis At End “I” PYJ Pin Flag For Bending Moment About Beam Element Y-Axis At End “J" PZJ Pin Flag For Bending Moment About Beam Element Z-Axis At End "J" SF35 Beam Shape Factor At End “1" About Beam Y-Axis SF26 Beam Shape Factor At End “I", About Beam Z-Axis SF35J Beam Shape Factor At End “J" About Beam Y-Axis SF26J Beam Shape Factor At End ”J” About Beam Z-Axis REMARKS (1) Optional data card(s). (2) “NPIN" on card 0040 specifies the number of these cards for input (3) The pin flags are defined as follows: 0 = Fixed 1 = Pinned (4) Blank entries are read as zero. (5) All entries except SF26, SF35, SF26J and SF35J are right justified integers. SF26. SF35, SF26J and SF35J are E10.0 format. (6) The beam element Y- and Z-axis directions depend on the beam element geometric orientation as shown in Figure 2-3. (7) Bending moments about the beam element Y- and Z-axes correspond to bending moments in the beam element X-Z and X-Y planes, respectively, as outlined in Table 2-3. (8) All entries requiring scientific notation (X.XEXX) should be right justified. (9) Format for this card is (2 (12,13), 415,4E 10.0). (10) Beam shape factors SF26 and SF35, SF26J, and SF35J can be obtained from Table 2-4. and Reference 14. (11) SF26, and/or SF35 values are required for representation of plastic hinge at beam end I. (12) SF26J and/or SF35J values are required for representation of plastic hinge at beam end J. If a beam end is to be pinned then the desired PY, PZ, PYJ and PZJ flags are used and the SF26, SF35, SF26J and SF35J values are input as zero. The program will treat these beams as not providing for moments at the appropriate end and direction. (b) to define a beam that can develop a plastic hinge at one or botli ends of the beam. If a plastic hinge is represented the appropriate beam end direction (PY, PZ, PYJ, PZJ) must be flagged and a corresponding (SF35, SF26, SF35J, SF26J) must have a value. The program will treat such a beam as fixed until such time as the plastic moment is formed. Thereafter the beam moment in the noted direction is maintained (no longer changes). In order to use the plastic moment equations the user must have beam section properties Z1 or Z2 (card 0900) defined since KRASH computes the plastic moment as follows: f = shape factor (SF35, SF26, SF35J, SI)26J) < x E ■ E E B -1 1.5 u 1200 FIELD CONTENTS M I N J IJUB DB REMARKS Massless Node Point Number At End ‘'I” (Right Justified Integer) Mass Point Number At End "I" (Right Justified Integer) Massless Node Point Number At End “J” (Right Justified Integer) Mass Point Number At End "J" (Right Justified Integer) Flag For The Type Of Axial Loading In The Beam Elements IJUB= +1. Tension Only IJUB = -1. Compression Only Deadband for axial loading, inches (1) Optional data card(s). (2) “NUB" on card 0040 specifies the number of these cards for input. (3) Blank entries are i. ad as zero. (4) The general form of the load-deflection curve for the axially unsymetric beam element is as follows: LOAD POUNDS / / V DB / / IJUB = -1, COMPRESSION •+- DB / / / / DEFLECTION - INCHES -► IJUB = +1, TENSION (5) This type of beam element may also incorporate nonlinear characteristics by specifying the nonlinear properties per the 1800-series cards. (6) The axial load-deflection curves that can be obtained using this capability are described in Volume I,Section 1.3.5.3.5. (Reference 1) (7) Format for this card is (2 (12,13), 15. 5X, E 10.0). KRASH INPUT DATA CARD 1290 : SHOCK STRUT DATA DESCRIPTION: Friction coefficient and number of metering pin tables. FORMAT EXAMPLE: 01 2 3 4 5 6 7 S 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ALPHAP NMPTAB x x x WMR 2 1 1290 FIELD CONTENTS ALPHAP Constant For Use In Computing Shock Strut Friction Force NMPTAB Number of Separate Metering Pin Tables Input on Cards 1490/1500. REMARKS: (1) Optional data card. (2) Required only if NO LE0 1 0 (card 0040) (3) Only 1 card regardless of NOLEO value (4) Blank entry read as zero (5) Range of ALPHAP is between .1 to 2.0. The smaller the alphap used the closer the representation is to pure Coulomb friction. Generally a value of 1.0 is suitable. (6) See Appendix A for the discussion on oleo friction forces for alphap selection. (7) Format for this card is (E10.0,110). KRASH INPUT DATA CARDS 1300: SHOCK STRUT DATA DESCRIPTION': Air curve parameters FORMAT EXAMPLE 0 i ■> 3 4 5 6 7 ■n 1 2 34567X90I234567890123456789012M56789012345678901234567890I2345678901234567*90 Q ■ D 8 EOLEO FAO FAA EXPOLE YMAX x 9 ■ n ■ ■ 10.27 116. 5. 1.0 9.32 □ 1300 FIELD CONTENTS M I N J EOLEO FAO FAA EXPOLE YMAX Massless Node Point Number In End "I" (Right Justified Integer) Mass Point Number At End “I” (Right Justified Integer) Massless Node Point Number At End "J" (Right Justified Integer) Mass Point Number At End "J” (Right Justified Integer) Effective Total Strut Cylinder Length, in. Fully Extended Gear Preload, lb. Ambient Air Preload, lb. Poly tropic Exponent. Maximum Stroke, in. REMARKS (1) Optional data cards. (2) "NOLEO" on card 0040 specifies the number of these cards for input. (3) All entries requiring scientific notation (X.XEXX) should be right justified. (4) EXPOLE ranges from 1 (isothermal) to 1.4 (adiabatic). Adiabatic condition will usually prevail. (5) See Appendix A for a description of the shock strut parameters and their usage. (6) Format for this card is (2 (12,13), 5E10.0). KRASH INPUT DATA CARDS 1400: SHOCK STRUT DATA DESCRIPTION Damping constants, linear springs at extended and compressed ends of strut travel and coulomb friction. FORMAT EXAMPLE: 01 2345678 12345678901234567890123456789012345678901234567890123456789012345678901234567890 D ■ B ■ BOLEO BROLEO XkEXT XKCOMP FCOUL MPTAB ►:< L B ■ B 0.24 0.48 10000. 10000. 5.5 1 1400 FIELD CONTENTS M I N J BOLEO BROLEO XKF.XT XKCOMP FCOUL MPTAB i i Massless Node Point Number At End “1” (Right Justified Integer) Mass Point Number At End “I” (Right Justified Integer) Massless Node Point Number At End “J" (Right Justified Integer) Mass Point Number At End “J" (Right Justified Integer) Strut Orifice Damping Ib-sec2/in2 Strut Rebound Valve Damping lb-sec^/in 1 2 3 4 5 * 7 Linear Spring At Extended End Of Strut Travel, lb/in. Linear Spring At Compressed End Of Strut Travel, lb/in. Coulomb Or Constant Friction Force, lbs. Metering Pin Table Number. If a Metering Pin Is Not Used. Input Zero. MPTAB Refers to Metering Pin Tables Input Sequentially On 1500-Series Cards. REMARKS: i (1) Optional data cards. (2) “NOLEO" on card 0040 specifies the number ;f these cards for input. (3) All entries requiring scientific notation (X.XEXX) should be right justified. (4) See Appendix A for a description of the shock strut parameters and their usage. (5) If a metering pin table is used, BOLEO is ignored. If MPTAB is input as a negative integer, the subsequent table on cards I 500 is interpreted as total gear load versus stroke. This is used only for the inverse metering pin option, explained in Appendix A. (h) No. of cards = NPTSMP value (card 1290) (7) Format for this card is (2 (12, 13), 5EI0.0,110). KRASH INPUT DATA CARD 1490 : MATURING PIN DATA DESCRIPTION : Number of points in following metering pin table FORMAT EXAMPLE: FIELD CONTENTS NPTSMP Number of Cards in The Following Table of YOLEO Versus BOLEO (Maximum Allowable is 100 ) REMARKS : (1) Optional data card. Required only if MPTAB is nonzero on any of the 1400-Series cards. (2) This card precedes each 1500-Series of metering pin table cards. For example, if there were 3 metering pin tables (NMPTAB = 3 on card 1290), the proper sequence would be 1490 1 card 1500-XX NPTSMP, cards 1490 1 card 1500-XX NPTSMP 2 cards 1490 1 card 1500-XX NPTSMP 3 cards (3) Format for this card is 110 KRASH INPUT DATA CARDS 1500: METERING PIN DATA DESCRIPTION : Table(s) of oleo piston compression versus damping constant. FORMAT EXAMPLE 01 2345678 12345678901234567890123456789012345678901234567890123456789012345678901234567890 YOLEO BOLEO 7. 1.76E02 1500 FIELD YOLEO BO LEO REMARKS input. If NMPTAB= 0 on card 1290, then none of these cards are used. (2) Format for this card is 2E10.0. (3) If MPTAB on card 1400 is input as a negative integer, then BOLEO on the corresponding 1500-Series cards is interpreted as total gear load. This is referred to as the inverse metering pin option, which can be used to calculate BOLEO versus YOLEO if a known for desired) load-deflection characteristic curve is input on this series of cards. This option is explained in Appendix A. CONTENTS Oleo Piston Compression. Inches. Measured From Fully Extended Position Oleo Hydraulic Damping Constant, Pount-Sec ^/in^, at The Piston Position Defined by YOLEO (1) Optional data card(s). NPTSMP on card 1490 defines the number of these cards to KRASH INPUT DATA CARD 1600 : BEAM ELEMENT DAMPING RATIO DESCRIPTION : Defines an overall damping ratio for the beam elements in the KRASH model. FORMAT AND FXAMPLE 0 1 1234567890 2 1234567890 3 1234567890 4 5 6 7 8 12345678901234567890123456789012345678901234567890 DAMPC X x x x 2X7 x 0.10 1600 FIELD CONTENTS DAMPC Damping Ratio (Actual/Critical) REMARKS (1) Required data card; however, it may be blank. (2) Blank entry is read as zero damping for all beams. (3) DAMPC values in KRASH are between .1 and .5. The sketch below shows the relationship between DAMPC values and percent of critical damping. (4) Format lor this card is hi0.0 o O UJ Z3 O 0C CC h- UJ CO Q_ KRASH INPUT DATA CARDS 1700 : NON-STANDARD BEAM ELEMENT DAMPING RATIOS DESCRIPTION Defines the end points and damping ratio for each beam element in the KRASH model for which a non-standard damping ratio is required. FORMAT AND EXAMPLE KRASH INPUT DATA CARDS 1800: NONLINEAR BEAM ELEMENT PARAMETERS D ESCRIPTION : Defines the end points, degree-of-freedom. KR table type, and linear deflection points for the nonlinear beam elements in the KRASH model. FIELD CONTENTS M I N J L NP LDP LDP I REMARKS Massless Node Point Number At End “1” (Right Justified Integer) Mass Point Number At End “I" (Right Justified Integer) Massless Node Point Number At End “J" (Right Justified Integer) Mass Point Number At End "J" (Right Justified Integer) Nonlinear Degree-Of-Freedom Where L= 1. 2. 3. 4, 5, 6 Corresponds To The Beam Element Coordinate System Directions X. Y, Z ,9 the user will input a nonstandard KR table with “NP" data points. (6) "LDPI " is used for the KR table "NP" = 9 and for "NP” = 4 (see remark 8). (7) The theory on how the KR curves are used to calculate internal beam loads is shown in Volume I. Section 1.3.5.3.4. (Reference I). (8) Foi "NP" = 4 the LDP value represents the deflection value at which KR = I. (LINEAR). LDPI icprescnts KR value (< I). 0 <_ deflection <_ LDP. NP = 4 can he iiselul I'm modeling elements such as a seat cushion which is soil miiialK and stiltens during compression. Do not use with LDPI > 1.0 (9) I'm mat tm i ho , ai d n ( 2 (12. 13 i 2L S . 2EI 0.0). MAX LOAD LDP IS THE DEFLECTION AT WHICH PEAK LOAD OCCURS h I KR = 0.0 NP = 5 THROUGH 9 NP = 5 V \ 1 NP = 6 NP = 7 NP = 8 3LDP 4 LDP DEFLECTION, INCHES OR RADIANS DEFLECTION, INCHES OR RADIANS FIGURE 2-6. STANDARD NONLINEAR BEAM ELEMENT STIFFNESS REDUCTION CURVES KRASH INPUT DATA CARDS 1900: NON-STANDARD KR TABLE DATA POINTS DESCRIPTION Defines non-standard KR tables for the nonlinear beam elements in the KRASH model ~~ which cannot be described with the standard KR tables. FORMAT AND EXAMPLE: - —— --- - -- 0 1 2 3 4 5 6 7 I 2 34 56 7*901234 56~X90I 2345678901234 56 78901234 567X9012345678901234567890123456789 XKR KR x :>c x: ►:< 1.0 -1.0 □ 1900 a v a FIELD CONTENTS XKR Deflection - Inches KR Stiffness Reduction Factor at XKR REMARKS (1) Optional data cards. (2) Fo: each use of "NP" > 9 on the 1 200-series cards. “NP" of these cards are required input. (3) Blank entries are read as zero. (4) Within each set of "NP" data cards, deflections must be in ascending order. (5) Each set of "NP" data cards must be ordered to correspond with the 1800 series cards where "NP" > 9 js used. (6) Format for this card is 2E10.0. X © KRASH INPUT DATA CARD 2000: CONTROL VOLUMt MASS PENETRATION PARAMETERS DESCRIPTION : Defines a control volume around a selected mass point in the KRASH model which is monitored for penetration by another mass point during the analysis. FORMAT AND EXAMPLE 0 1 -> 3 4 S 6 7 8 12345678901234567890123456789012345678901234S67890123456789012345678901234567890 XN XP YN YP ZN ZP x 0 10 0 10.0 3.0 4.0 10.5 1.9 □ 2000 FIELD CONTENTS XN Distance From Mass Point To XP Distance From Mass Point To YN Distance From Mass Point To YP Distance From Mass Point To ZN Distance From Mass Point To ZP . Distance From Mass Point To REMARKS (1) Optional data card. (2) ‘MVP” on card 0040 specifies the mass point number for which this data card applies. (3) Only one mass point may have a control volume. (4) Blank entries are read as zero. (5) All distances are positive and units are inches. (6) For a RUNMOD = 2 the MVP mass should be selected from a mass point located on the airplane centerline. This restriction doesn’t apply to RUNMOD = 0 or 1. (7) Any of the model mass points may penetrate the designated control volume of the model. (8) The mass penetration calculations are described in Volume I, Section 1.3.10. (9) Format for this card is 6E 10.0. 2-63 KRASH INPUT DATA CARD 2100 : DRI ELEMENT SPECIFICATION DESCRIPTION: Defines the end mass points of the DRI beam elements in the KRASH model. FORMAT AND EXAMPLE: 1 0 1 2 3 4 5 6 7 8 1 12345678901234567890123456789012345678901234567890123456789012345678901234567890 11 Jl m J2 13 J3 14 J4 15 J5 16 J6 17 J7 6 3 U 2100 FIELD CONTENTS II Mass Point Number At End “I" JI Mass Point Number At End “J” REMARKS: (1) Optional data card(s). (2) "NDRI" on card 0040 specifies the number of these cards for input. (3) All entries are right justified integers. (4) Blank entries are read as zero. (5) Up to seven DRI beam elements can be specified on each card. (Normally an analysis requires from 1 to 4 DRI elements). (6) DRI beam element section properties can be defined on the 0900-series cards or if a MTL code of 10 is used the program will automatically compute the DRI properties. (7) Beams that connect massless node points cannot be used as DRI elements, only direct mass to mass connection is allowed. (8) The usage of DRI elements is described in Volume I, Section 1.3.12. (9) Format for this card is 1415. i i 2-64 KRASH INPUT DATA CARD 2200 : OCCUPIABLE VOLUME CHANGE PARAMETERS DESCRIPTION : Defines occupiable volumes in the KRASH model for volume change calculations by specifying the eight corner mass points. FORMAT AND EXAMPLE: 01 2345678 1234567890123456789012345678901234S678901234567890123456789012345678901234567890 11 12 13 74 15 16 17 18 > 3 4 5 ( » 7 8 1234567890123456789012345678901234567890I234567890123456789012345678901234567890 IJ K ■9 NLIL ISCN NSMI FSLIC BLLIC WLLIC RUPRAT 7 3 5 3 1 10 1160. 1.4 2800 El ELD 1.1 k.L NLIL ISCN NSMI FSLIC, BLLIC, WLLIC RUPRAT REMARKS: CONTENTS Beam number, the internal loads from which are to be analyzed on load-interaction diagrams. Load directions for the x and y axes of load-interaction curve. In the above example, 3.5 means use Fz and My, in the user-defined sign convention. Number of sloping load-interaction lines, the data for which is defined on the 3000-series cards. The maximum allowed per load-interaction diagram is 20, including those lines generated as mirror images. User-defined sign convention number to be applied to the beam internal loads before selecting the K.L loads for this load interaction diagram. If ISCN = 0, then the CALAC internal load sign convention, defined in Section 4.15 reference 1, is used. Number of masses involved if shear and moment summation of a particular station is required. Defines the location on the airplane for this load-interaction curve. Input only one of these nonzero. For fore-aft beams, use FSLIC. For lateral beams use BLLIC. For vertical beams, use WLLIC. The location input must be physically within the end points of beam IJ. In the example shown, a load-interaction curve is defined for beam number 7, which is a fore-aft beam, at FS 1160. Beam IJ will rupture when the maximum load ratio for this interaction curve exceeds RUPRAT. If the input data on cards 2900 and 3000 define a strength envelope which at any point would cause complete failure of the structure represented by beam IJ, then RUPRAT = 1.0 would be appropriate. A very large value (RUPRAT = 1000) will guarantee that beam rupture is not triggered by the load-interaction curve calculations. (1) Optional data card. NLIC on card 0060 defines the number of these cards to be input. (2) For each load-interaction curve, cards 2800, 2900 and 3000 are input in sequence, before the next 2800-3000 series. In other words, the 2800-3000 card sequence is repeated NLIC times. (3) Section 3.1 describes the load-interaction calculations and data. (4) Format for this card is (615, 4E10.0). 2-71 KRASH INPUT DATA CARDS 2000 : LOAD INTERACTION CURVE DATA DESCRIPTION: Defines the maximum load levels along the positive and negative x and y load axes. EORMAT AND EXAMPLE: 0 12 3 I 234 56789012345678901 23456789C 4 11 23456789C pmyi in 1 f 11234567891 FMYI 1 Cl 1 ) t ) 123456789C PM YI 1C4 1 . 1 1123456789C FMYf \CA 1 » 112 8 34567890 254000. 74.0E06 -254000. -74.0E06 — 2900 HELD CONTENTS Maximum load levels along the positive and negative x and y load axes. Sequenee is as follows: 1 = + x axis 2 = + y 3 = - x 4 = - y These lines form a rectangular load-interaction strength envelope that looks like: y CNI k * 4 -H 3 ? - 1 X 41 Optional data card. NLIC on card 0060 defines the number of these cards to be input. For each load-interaction curve, cards 2800, 2900 and 3000 are input in sequence, before the next 2800-3000 series. In other words, the 2800-3000 card sequence is repeated NLIC times. Section 3.1 describes the load-interaction calculations and data. Format for this card is (3OX. 4E10.0). A zero or blank input for any of these 4 values will invoke a default value of 1.E20 pounds or inch-pounds. FMXLIC3 and FMXLIC4 are input as negative numbers. REMARKS: (I) (2) (3) (4) (5) ( 6 ) EMXLICI EM X LIC 2 EMXLIC3 EMXLIC4 2-72 KRASH INPUT DATA CARDS 3000: LOAD INTERACTION CURVE DATA DESCRIPTION: Defines the intercepts for sloping load interaction lines and mirror image fiags for generating these lines in other load quadrants. EORMAT AND EXAMPLE. 012 3 45678 I234S678901234S678901234S678901234S678901234567890123456789012345678901234567890 MXY1 MXY2 HELD MXY I MXY2 REMARKS: I'LIC! FL1C2 1500. 30.F06 CONTENTS Mirror image fiags defining additional load-interaction lines that are generated internally in KRASH. based on the line defined by FLIC1 and FL1C2. The following combinations are possible: MXY1 MXY2 RESULT Total No. of L.I. Lines 0 0 No mirror images generated 1 0 1 Mirror about y axis only 2 1 0 Mirror about x axis only 2 1 1 Mirror about x and y axes 4 Intercept of sloping load-interaction line with x (FLIC 1) and y (FLIC2) axes. These two numbers define a single load interaction line, while MXY1 and MXY2 can be used to generate additional lines which are symmetrical about the x. y or both axes. (1) Optional data. NLIC on Card 2800 defines the number of these cards to be input (2) For ecah load-interaction curve, cards 2800. 2900 and 3000 are input in sequence, before the next 2800-3000 series. In other words, the 2800-3000 card sequence is repeated NLIC times. (3) Section 3.1 describes the load-interaction calculations and data. (4) Format for this card is (215. 2E10.0).. (5) For each load-interaction curve, a maximum of 20 load-interaction lines are allowed. The limit of 20 includes any lines generated by KRASH through nonzero inputs of MXY I and MXY2. (6) The example data will generate the following load-interaction strength envelope: ▲ y ~ 10 6 IN (LBS _ ~ 30 | ~ 2 0 - ™X ~ to 3 IBS ^ 0N/@ Load-interaction line 1 is generated by the user-input FLIC] and FLIC2. Lines 2-4 are generated by KRASH because MXY1 = MXY2 = 1. 2-73 KRASH INPUT DATA CARDS 3010: LOAD INTERACTION CURVE DATA DESCRIPTION: Defines water line at forward and aft ends of segment for which shear and moment loads are to be summed. FORMAT AND EXAMPLE: 01 2345678 12345678901234567890123456789012345678901234567890123456789012345678901234567890 WLSMF WLSMA 215.7 206.4 FIELD CONTENTS WLSMF Water line at beam forward end. WLSMA Water line at beam aft end. REMARKS: (1) Optional data card. Use only if WSMI on card 2800 is > 0. (2) Beam number (IJ) is defined. (3) Format f or this card is (2E 10.0). 2-74 KRASH INPUT DATA CARDS 3020: LOAD INTERACTION CURVE DATA DESCRIPTION: Defines masses located at station for which shear and moment loads are to be summed. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 I 2345678901 2345678901 23456789012345678901234S678901 2345678901234567 890123456789 IJSMi IJSM2 IJSM3 IJSM4 IJSM5 1JSM6 IJSM7 IJSM8 1JSM9 IJSM 10 33 41 49 57 65 84 104 105 118 1 19 IJSM IJSM IJSM 12 13 14 FIELD IJSM1 thru IJSMI4 REMARKS: CONTENTS Mass Point Number (Right Justified Integer) (1) Optional data card. Use only if NSMI on card 2800 is > 0. (2) Masses designed. IJSM1 thru IJSM14 must all be at same FS or BL station. (3) 14 masses per card. Use NSMI/14 cards. (4) Format for this card is (1415). O 00 KRASH INPUT DATA CARDS 3100. MISCELLANEOUS MASS POINT PARAMETERS DESCRIPTION : Defines any nonzero aerodynamic lift forces, angular moments of rotating masses, and mass cross products of inertia for mass points in the KRASH model. FORMAT AND EXAMPLE: 0 I 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 B LC HEX HEY HEZ XYI YZI XZI If H 100.0 0.0 0.0 1.3 -3.3 0.0 0 FIELD I LC HEX HEY HEZ XYI YZI XZI NIISY REMARKS: CONTENTS Mass Point Number (Right Justified Integer) Lift Coefficient For Aerodynamic Force, Positive Up Angular Momentum of Rotating Masses About Mass Point X-Axis — Inch * Pound * Second Angular Momentum of Rotating Masses About Mass Point Y-Axis - Inch * Pound * Second Angular Momentum of Rotating Masses About Mass Point Z-Axis - Inch * Pound * Second Mass Cross Product of Inertia in Mass Point X-Y Plane - Inch * Pound * Second **2 Mass Cross Product of Inertia in Mass Poim Y-Z Plane - Inch * Pound * Second **2 Mass Cross Product of Inertia in Mass Point X-Y Plane - Inch * Pound * Second **2 Symmetry flag which defines the signs for HEX, HEY. HEZ for masses on the right side of the airplane, generated by subroutine GENMOD, if RUNMOD on card 110 is 2. (1) Optional data card(s). (2) ‘NHE on card 0050 specifies the number of these cards for input. (3) Blank entries are read as zero. (4) The airplane weight is multiplied by the lift coefficient to generate an aerodynamic lift force on the mass point. This lift acts upward in ground axes. (5) Format for this card is(12. E8.0, 6EI0.0.12) (6) NHSY = 0 corresponds to a symmetrical model (counter-rotating engines), so that HEX-RIGHT = - HEX LEFT HEY-RIGHT = + HEY LEFT HEZ-RIGHT =- HEZ LEFT NHSY = 1 corresponds to an anti-symmetrical model (engines rotate in same direction), so that HEX-RIGHT = + HEX LEFT HEY-RIGHT = -HEY LEFT IIEZ-RIGHT =+ HEZ LEFT 2-76 KRASH INPUT DATA CARD 3200: MASS POINT EULER ANGLES DESCRIPTION: Defines for any mass point in the KRASH model three Euler angles to arbitrarily rotate the mass point or body coordinate system relative to the airplane coordinate system. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 mm ^1 PHIDP THEDP IDP x B 3 0 157 0.0 0.0 3200 FIELD CONTENTS I Mass Point Number (Right Justified Integer) PHIDP Roll Euler Angle about Airplane X-Axis - Radians THEDP Pitch Euler Angle about Airplane Y-Axis - Radians PSIDP Yaw Euler Angle about Airplane Z-Axis- Radians REMARKS (1) Optional data card(s). (2) “NPH” on card 0050 specifies the number of these cards for input. (3) Euler angles are order-dependent rotations. The order is PSIDP, THEDP, PHIDP. (4) Blank entries are read as zero. (5) These angles relate the mass-fixed axes to the airplane axes. Normally these axes coincide and therefore the angles are zero. If mass inertia were available in an inclined axis system the user might want to utilize this option. Another reason for inclining mass axes away from the airplane axes is to enable the user to orient an external spring in a direction that doesn’t coincide with any of the airplane axes (external springs must point along one of the mass fixed axes). (6) Roll angle positive when mass axes are “right-wing-down” relative to eg axes. Pitch angle positive when mass axes are “nose-up” relative to eg axes. Yaw angle positive when mass axes are “nose-right” relative to eg axes. (7) Format for this card (15, 5X, 3E10,0). 2-77 KRASH INPUT DATA CARDS 3300: MASS POINT AERODYNAMIC COEFFICIENTS DESCRIPTION: Defines for any mass point 6 aerodynamic load coefficients to be used to calculate aerodynamic loads. FORMAT AND EXAMPLE: 0 1 2 3 4 ; 5 I 6 7 8 12345678901234567890I23456789012345678901234567890123456789012345678901234567890 I 85 CXAIR CYAIR CZAIR CLAIR CMAIR CNAIR 13 -137. 0. -1500. 3500. 5200. 3300 FIELD CONTENTS 1 Mass point number CXAIR Aerodynamic drag coefficient, in" CYAIR Aerodynamic side force coefficient, in" CZAIR Aerodynamic lift coefficient, in" CLAIR Aerodynamic rolling moment coefficient, in' CMAIR Aerodynamic pitching moment coefficient, ii CNAIR Aerodynamic yawing moment coefficient, in REMARKS. (1) Optional data card(s). (2) NAERO on card 0050 specifies the number of these cards for input. (3) The input aerodynamic coefficients are defined as follows: CXAIR CYAIR CZAIR CLAIR CMAIR CNAIR S * CX alpha S * CY beta S *CZ alpha S * b * CL beta S * c* CM alpha S * b * CN beta where S b c alpha beta CXalpha CYbeta CZalpha = Reference area. in“ = Reference span, in = Reference mean aerodynamic chord, in. = Angle of attack, rad. Positive when mass is nose up relative to its velocity vector. = Sideslip angle, rad. Positive when mass is nose left relative to its velocity vector. = Slope of aerodynamic drag (positive forward (versus alpha. 1/rad = Slope of aerodynamic side force (positive right) versus beta. 1/rad = Slope of aerodynamic vertical force (positive down) versus alpha. 1/rad 2-78 KRASH INPUT DATA REMARKS : (Continued) CLbeta = Slope of aerodynamic roll moment (positive right wing down) versus beta, 1/rad CMalpha = Slope of aerodynamic pitch moment (positive nose up) versus alpha. I /rad CNbeta = Slope of aerodynamic yaw moment (positive nose right) versus beta, I/rad (4) All data refer to the local mass defined by I, not to the entire airplane. (5) Aerodynamic loads at zero ALPHA are not included in the calculations. If necessary, these can be included as external forces/moments in the 3300 series cards. (6) Aerodynamic loads using these coefficients are not included in the balanced initial conditions coding. (7) The format for this card is (I5.5X.6E 10.0). 2-79 ' KRASH INPUT DATA CARDS 3400: MASS POINT TIME HISTORY ACCELERATION PARAMETERS DESCRIPTION : Defines the mass point number, degrce-of-freedom. and number of data points to specify an acceleration or load time history for any mass point in the KRASH model. FORMAT AND EXAMPLE: 01 2345678 12345678901 2345678901 2345678901 23456789012345678901 2345678901234 5678901234567890 I m NP >< ■><^ >> All entries are right justified integers. (4) Each use of this card requires that “NP” number of the 3500-series cards be used. (5) The masses must he input in sequence starting with the lower numbered masses. (Cl Formal for this card is 415. (7) NCODE = 0 lor acceleration input table NCODE = I tor force/moment input table (8) It is permissible to input forces for some masses and accelerations for other masses. If both types are input for the same mass, the accelerations will predominate. 2-80 KRASH INPUT DATA CARDS 3500: MASS POINT ACCELERATION OR LOAD TIME HISTORY DATA TABLE DESCRIPTION: Defines a table of time and acceleration or load data points for each mass point specified on the 3400-series cards. FORMAT AND EX.AMPLE: 0 1 2 3 4 5 6 7 * 1234567X901234567X901214567X90123456789012345678901234567K90I2345678901234567890 T ACCEL x Xf x ^XT! hxT X 0.01 -0.6 3500 FUlD CONTENTS T Time - Seconds Accel Acceleration G’s or Radians per Second **2 or Loads Pounds or Inch-Pounds REMARKS: (1) Optional data cards. (2) For each of the “NACC” number of 3400-series cards, “NP” number of these cards are required. (3) Within each set ot data, the “NP” cards must be arranged in ascending order of time. (4) Each set of data must be ordered to correspond with the 3400 series cards. (5) Blank entries are read as zero. (6) A maximum of 5000 acceleration times are allowed. For example, if accelerations are applied to 50 masses, the time history of each location can not exceed a curve consisting of 100 points. (7) The values of acceleration or load are in mass axes, with translational accelerations in g's and rotational accelerations in rad/sec^. Loads are in pounds or inch-pounds. (See Equation 1-117 Volume I). (8) Format for this card is 2E10.0. 2-81 KRASH INPUT DATA CARDS 3600: DIRECT INPUT OF BEAM ELEMENT 6X6 STIFFNESS MATRIX DESCRIPTION: Defines the end points and 6x6 stiffness matrix terms for any beam element in the KRASH model. FORMAT AND EXAMPLE: 0 i 2 3 4 5 6 7 8 i 2 34567890123456789012345678901234567890 1 23456789012 34567890I 234S6789012 34567890 iD ■ D ■ (mgii x x x ►:< ■ B ■ B _ 2400 0 1 2 3 4 5 6 7 8 1234567890 1 234567890123456789012345678901234567890123456789012345678901 234567890 K 1 1 K 1 2 K 1 3 K 14 K 1 5 K16 x >:< 3500.0 0.0 0.0 _ 2401 0 1 3 4 5 6 7 8 1 234 56' X90I 2 34 56789012 345678901 2 34 567890 1234567890123456789012345678901234567890 K 2 1 K 2 2 K23 K24 K25 K26 'tmm 0 0 1.7E07 0 0 0.0 -2.2E05 2402 0 1 2 3 4 5 6 7 8 123456789012345678901234567890123456789012345678901234567890123456789012 34567890 K3I K 3 2 K33 K34 K35 K36 x X 0 0 0 0 1.7E07 0.0 0.3E05 _ 2403 a l 1 3 4 5 6 7 8 i: u 5 ^-v>o 123456-840123456**901234567890 1234567890123456789012345678901 34567890 K4I K42 K43 K44 K45 K46 X 0 0 1 1 0 0 15200 0 0.0 _ 2404 0 1 2 3 4 5 6 7 8 1 12345678901234567890123456789012345678901234567890123456789012345678901234567890| K 5 1 K52 K53 K54 K55 K56 x § 0 0 0.3E06 3.5E09 _ 2405 0 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890| K6I K62 K63 K64 K65 K66 x X 0.0 2.2E05 0.0 3.5E09 _ 2406 KRASH INPUT DATA CARDS 3600: DIRECT INPUT OF BEAM ELEMENT 6X6 STIFFNESS MATRIX (Continued) FIELD CONTENTS M Massless Node Point Number at end “I" (Right Justified Integer) I Mass Point Number at end “I” (Right Justified Integer) N Massless Node Point Number at end “J” (Right Justified Integer) J Mass Point Number at end “J” (Right Justified Integer) KIJ Stiffness Matrix Terms - Pounds per Inch or Inch * Pounds per Radian REMARKS: (1) Optional data cards. —— (2) “NKM” on card 0050 specifies the number of these card sets for input. (3) Blank entries are read as zero. (4) The beam element must be included on the 0900-series cards. (5) The stiffness data on these cards will override any values calculated with the beam element section properties on the 0900-series cards. (6) The input 6x6 stiffness matrix corresponds to the lower right-hand quadrant of a full 12x12 beam element stiffness matrix, shown as Equation (1-23) in Volume I. (7) Entries requiring scientific notation (X.XEXX) should be right justified. (8) Format for the beam identification card is 2(12,13). (9) Format for the stiffness matrix data cards is 6E10.0. 2-83 KRASH INPUT DATA CARDS 3700-3X00: MASS POINT POSITION (STRUCTURE DEFORMATION) PRINTER PLOT PARAMETERS DESCRIPTION Defines the planar view, scale factors, and mass point numbers for each mass point position (structure deformation) printer plot. FORMAT AND EXAMPLE : 01 2 3 45678 I 234 56 78^012 34 5 67 89012 34 56 78901234 567 8901 2345678901 2345678901 234 5678901 234567890 01 2345678 12345678901234567890123456789012345678901234567890123456789012345678901234567890 M2 M3 M4 2 5 6 M 6 M 7 M 8 M9 11 13 14 21 Mil 1 Ml 2 I M 1 3 M14 27 FIELD NTPL NMPTS ISC ALE CONTENTS Flag to select Planar View where NTPL = 1.2. 3 corresponds to top. side, and frontal views, respectively (Right Justified Integer) Number of Mass Points (Right Justified Integer - Maximum allowed is 50) Flag to Select Scaling Option as follows (Right Justified Integer): [SCALE 0 XSCAL1 Y SCALE Ml REMARKS: _ TYPE OF SCALING _ Automatic scaling w'here horizontal and vertical plot axes scales are selected independently based on the corresponding largest mass point displacement components. Automatic scaling where horizontal and vertical plot axes scales are set equal based on largest mass point displacement component. User defined scaling Horizontal Scale Factor required if "ISC ALE" = 3 Vertical Scale Factor required if "ISC ALE" = 3 Mass Point Number (Right Justified Integer) (1) Optional data cards. (2) “NPLT" on card 0140 specifies the number of these card sets for input. (3) “NTPL“NMPTS,” and “MI" must be nonzero. (4) Blank entries are read as zero. (5) Scale factor units are inches of mass point displacement per inch of paper. (6) Entries requiring scientific notation (X.XEXX) should be right justified. (7) Recommend ISCALE = 3 if user plans to compare or overlay plots at different time periods. (8) Format for card 3700 type is (315.5X.2EI 0.0). (9) Formal for card 3800 type is 1415. 2-84 KRASH INPUT DATA CARDS 3900: MASS POINT PRINTER PLOT PARAMETERS DESCRIPTION: Defines the mass point number and flags to specify which mass point output quantity time histories will be printer plotted. FORMAT AND EXAMPLE: 0 1 2345 1 67890 1 234 5 7^ 4 5 6 7 8 67890123456789012345678901234567890123456789012345678901234567890 l MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 ft 3 m 1 m 1 0 0 1 0 ■1 3900 FIELD CONTENTS I Mass Point Number MP1 Flag for Linear Displacements (X. Y, Z.- Inches') in the Ground Coordinate System MP2 Flag for Euler Angles (PHI. THETA, PSI ■ Radians) in the Airplane Coordinate System MP3 Flag for Linear Velocities (X. Y, Z - Inches per Second)in the Ground Coordinate System MP4 Flag for Linear Velocities (U. V. W - Inches per Second) in the Mass Point or Body Coordinate System MP5 Flag for Angular Velocities (P. Q, R - Radians per Second) in the Mass Point or Body Coordinate System MPt> Flag for Unfiltered Linear Accelerations (X. Y, Z • G's) in the Mass Point or Body Coordinate System MP~ Flag for Filtered Linear Accelerations (X, Y. Z - G’s) in the Mass Point or Body Coordinate System MP8 Flag for Angular Accelerations (P. Q. R • Radians per Second**2) in the Mass Point or Body Coordinate System MP9 Flag for Impulse (X, Y. Z in G-sec., P. Q, R in (RAD Per Sec) in Mass Point or Body Coordinate Axes for Filtered Data REMARKS: (1) Optional data card(s). (2) “NMEP" on card 0140 specifies the number of these cards for input. (3) All entries are right justified integers. (4) “1” must be nonzero. (5) Blank entries are read as zero. (6) Flags for printer plot time histories are defined as follows: 0 = No 1 = Yes Format for this card is 1015, ( 7 ) KRASH INPUT DATA CARDS 4000: MASSLESS NODE POINT PRINTER PLOT PARAMETERS DESCRIPTION: Defines the massless node point number, mass point number, and flags to specify which massless node point output quantity time histories will be printer plotted. FORMAT AND EXAMPLE: 0 1 234 5 1 67890 1 2345 2 3 4 S 6 7 8 67890123456789012345678901234567890123456789012345678901234567890 M I NPl NP2 NP3 NP4 NP5 NP6 x 'X" I 7 m 1 0 1 0 0 4000 FIELD CONTENTS M Massless Node Point Number I Mass Point Number NPl Flag for Linear Displacements (X, Y, Z - Inches) in the Ground Coordinate System NP2 Flag for Linear Velocities (X, Y, Z - Inches per Second) in the Ground Coordinate System NP3 Flag for Linear Velocities (U, V, W - Inches per Second) in the Mass Point or Body Coordinate System NP4 Flag for Unfiltered Linear Accelerations (X, Y, Z - G’s) in the Mass Point or Body Coordinate System NP5 Flag for Filtered Linear Accelerations (X, Y, Z - G’s) in the Mass Point or Body Coordinate System NP6 Flag for Impulse (X, Y, Z in G-sec. P, Q, R in RAD/Sec) in Mass Point or Body Coordinate System REMARKS: (1) Optional data card(s). (2) “NNEP” on card 0140 specifies the number of these cards for input. (3) All entries are right justified integers. (4) “M" and “1” must be nonzero. (5) Blank entries are read as zero. (6) Flags for printer plot time histories are defined as follows: 0 = No 1 = Yes (7) Format for this card is815. 2-86 KRASH INPUT DATA CARDS 4100: BEAM ELEMENT LOADS PRINTER PLOT PARAMETERS DESCRIPTION: Defines the beam element number and flags to specify which beam element internal load ' time histories will be printer plotted. FORMAT AND EXAMPLE: FIELD CONTENTS IJ Beam Element Number BFP1 Flag for Axial and Shear Forces (FX, FY, FZ - Pounds) BFP2 Flag for Torque and Bending Moments at End “1” (MX, MY. MZ - Inch * Pounds) BFP3 Flag for Torque and Bending Moments at End “J” (MX, MY, MZ - Inch * Pounds) BFP4 Flag for choosing between beam axis loads or loads in mass axes. REMARKS: (1) Optional data card(s). (2) “NBFP” on card 0140 specifies the number of these cards for input. (3) All entries are right justified integers. (4) “[J'’must be nonzero. (5) Blank entries are read as zero. (6) Flags for printer plot time histories are defined as follows: 0= No 1 = Yes (7) If BFP4 = 0, then all load data are in the beam element coordinate system shown in Figure 2-5. If BFP4 = 1. then all load data are in the mass point coordinate system at mass i or j. as appropriate. (8) If BFP4 = 1, then BFP1 through BFP3 control plotting of the following: BFPI: FX,FY,FZ at mass I. in mass point coordinate system BFP2: FX,FY,FZ at mass J. in mass point coordinate system BFP3: MYI and MYJ. moments about y axis i.t each mass point coordinate system. (9) Format for this card is 515. 2-87 KRASH INPUT DATA ( ARDS 4:u0 BI AM ELEMENT DEFLECTION-ROTATION PRINTER PLOT PARAMETERS DESCRIPTION Defines the beam element number and flags to specify which beam element deflection and " rotation time histories will be printer plotted. FORMAT AND EXAMPLE 01 2 3 45678 1 234>67890 I 234567840 I 234567890 I 23456789012345678901 2345678901 2345678901234567890 IJ BDP1 BDP2 3 0 0 FIELD CONTENTS [J Beam Element Number BDP1 Flag for Deflection Differences of End “J” and End “1” (X, Y, Z - Inches) BDP2 Flag for Rotation Differences of End “J” and End “1" (Phi, Theta, Psi - Radians) BDP3 Flag for Rotation Sums of End “J” and End (Phi, Theta. Psi - Radians) REMARKS (1) Optional data card(s). (2) “NBDP" on card 0140 specifies the number of these cards for input. (3) All entries are right justified integers. (4) “1J" must be nonzero. (5l Blank entries are read as zero. (61 Flags for printer plot time histories are defined as follows: 0= No 1 = Yes (7) All deflection-rotation data is output in the beam element coordinate systems shown in Figure 2-3. (8) Formal lor this card is 415. KRASH INPUT DATA CARDS 4300 BEAM ELEMENT STRESS RATIO PRINTER PLOT PARAMETERS DESCRIPTION: Defines the beam element number and flags to specify which beam element stress ratio time histories will be printer plotted. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 8 I 23456"S90l 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890 IJ STP 1 STP2 STP3 STP4 STP5 XT X' "XT >:< 7 0 1 1 0 m 4300 FIELD CONTENTS 1J STP1 stp: STP3 STP4 STP5 Beam Element Flag for Stress Flag for Stress Flag for Stress Flag for Stress Flag for Stress Number Ratio for Top and Bottom Fibers Using Maximum Shear Stress Theory Ratio of Left and Right Fibers Using Maximum Shear Stress Theory Ratio of Top and Bottom Fibers using Constant Energy of Distortion Theory Ratio of Left and Right Fibers Using Constant Energy of Distortion Theory Ratio of Tension-Only. Compression-Only, and Axial Buckling Loads REMARKS (1) Optional data card(s). (2) “NSTP" on card 0140 specifies the number of these cards for input. (3) All entries are right justified integers. (4) "IJ" must be nonzero. (5) Blank entries are read as zero. (6) Flags for printer plot time histories are defined as follows: 0 = No 1 = Yes (7) Stress parameters must be provided for the beam elements on the 0900-series cards. (8) "NSC" on card 0050 must he flagged “yes.” (9) Format for this card is 615. 2-89 KRASH INPUT DATA CARDS 4400: EXTERNAL CRUSHING SPRING LOAD-DEFLECTION PRINTER PLOT - PARAMETERS DESCRIPTION: Defines the end point and flags to specify which external crushing spring load and deflection time histories will be printer plotted. FORMAT AND EXAMPLE: 0 1 2 3 4 5 6 7 X I;3456'890 I234567890123456789012345678901234567890123456789012345678901234567890 I M SEP1 SEP2 X’ x mam 3 1 m ■3 4400 HELD CONTENTS I Mass Point Number M Massless Node Point Number SI PI Flag for Axial Deflection (Inches) SI P2 Flag for Axial Loads (Pounds) REMARKS (1) Optional data card(s). (2) “NSEP" on card 0140 specifies the number of these cards for input. (3) All entries are right justified integers. (4) “I” must be nonzero. ( 5) Blank entries are read as zero. (6) Flags for printer plot time histories are defined as follows: 0 = No ! = Yes (7) All externa] crushing springs attached to the same mass point/massless node point will be printer plotted if that end point is specified. (8) Format for this card is 415. 2-90 KRASH INPUT DATA CARDS 4500 BEAM ELEMENT STRAIN AND DAMPING ENERGY PRINTER PLOT - PARAMETERS DESCRIPTION: Defines the beam element number and Hags to specify which beam internal element strain and damping energy time history will be printer plotted FORMAT AND EXAMPLE: 0 12 3 1 2345678901 2 34 567X901 234 567X90 4 5 6 7 b 12345678901234567890123456789012345678901234567890 U ENGI ENG 2 & XT X x 6 2 1 1 r 4500 FIELD CONTENTS IJ Beam Element Number ENG 1 Flag for Strain Energy (in.-lb.) ENG2 Flag for Damping Energy (in.-lb.) REMARKS: (1) Optional data cards. (2) “NF.NP" on card 0140 specifies the number of these cards for input. (3) All entries must be right justified. (4) “IJ’' must be nonzero. (5 ) Blank entries are read as zero. (t>) Flags for printer plot time histories are defined as follows: 0 = No 1 = Yes (7) Format for this card is 315. 2-91 KRASH INPUT DATA CARDS 4b00: DYNAMIC RESPONSE INDEX (DRI) PRINTER PLOT PARAMETERS DESCRIPTION: Defines the mass point number of a DRI beam element for dynamic response index (DRI) time history printer plots. FORMAT AND EXAMPLE: 0 i 2 3 4 5 6 7 8 I2345678901234567890123456789012345678901234567890123456789012345678901234567890 J si (B£5| :xc x a ms □ 4600 FIELD CONTENTS J Mass Point Number REMARKS (1) Optional data card(s). (2) “NDRP" on card 0140 specifies the number of these cards for input. (3) All entries are right justified integers. (4) “J" must be nonzero. (5) Blank entries are read as zero. (6) Flags for printer plot time histories are defined as follows: 0 = No 1 = Yes (7) The mass point number must be end “J" of a DRI beam element. (8) Format for this card is 15. CARD 4700: END OF DATA DESCRIPTION : Defines tire final card of the input data. FORMAT AND EXAMPLE 01 2345678 12345678901234567890123456789012345678901234567890123456789012345678901234567890 END END 4700 FIELD CONTENTS End The Mnemonic “End" (Left Justified) REMARKS : (1) Required data card. 2-92 2.3 OUTPUT AND SAMPLE CASE As explained in Section 2.1, the most general, case of a KRASH85 analysis involves the use of three separate programs: KRASHIC, MSCTRAN, and KRASH85. Table 2-6 shows a summary of the output from each program. A sample case which models one-half of a transport airplane with 21 masses and 28 internal beams will be used to illustrate the output for each program. This model is illustrated in figure 2-7. This is a test case with special elements for checkout purposes; it does not represent a realistic airplane m odel. TABLE 2-6. SUMMARY OF KRASH85 OUTPUT KRASHIC KRASH85 • Echo of input data (2 times) • Echo of input data (2 times) • Formatted printout of input data • Formatted printout of input data • Miscellaneous calculated data • Miscellaneous calculated data • Time histories of model responses MSCTRAN • Mass data • Internal beam data • Executive control deck echo • External spring data • Case control deck echo • Energy data • Input bulk data deck echo • Summaries at end of run • Sorted bulk data deck echo t External spring loading/unloading • Displacement vector • Summary of plastic hinge formations • Load vector • Summary of internal beam yielding and rupture • Forces of single-point constraint • Summary of energy distribution • Forces in bar elements • Interaction load time-histories • Element strain energies • Vehicle c.g. motion time-histories ■ Grid point force balance $ Time history plots of selected response quantities 2.5.1 KRASHIC Output 2. 3.1.1 Echo of Input Data This is a direct listing of the input data cards for the case being analyzed. Figure 2-8 illustrates this print for the sample case. Each page ot tin- list ins; is preceded hv a heading which identities the column numher. The sequence numhers are in columns 77 - 80. The first card, with a 1 in column 10, is generated hv the Job Control Language (.ICI.) , and is not part oi the data set (I.T . SAMPLE. DATA in this case) in the user's library. Ibis lirst card tells the program whether or not to read an additional data set oi slat ic tie) lections. A value of 1 means read t lie add i t iona 1 data set, 0 means don't read it. The ICI. is set up to supply a zero for this card for the i irst iteration, when no static del lection information is available, and a 1 lor all subsequent iterations, when the data are available, as generated hv NASTRAN. the listing in figure 2-8 is from the last iteration, and there- I ore the first card has a 1 in column 10. To reiterate, this card is atuoma- ticallv generated by the .ICI.; the user does not supply this card. Cards It) through 1480 are supplied by the user and represent the basic. KRAS 1185 data set described in Section 2.2. This is the data set referred to as XY.DAi'A in Section 2.1. Note how the dummy title cards serve to segment tin 1 date and facilitate reviewing and editing the data set. Following card 1480 is a set of cards numbered 1 through 7b. This is the .static deflection data set referred to as XYZ. NASOUT. DATA in Section 2.1. I he i irst six cards of this data set are title cards, the remaining cards are the three delleet ions and three rotations of eaeii grid point in the NASTRAN model used to solve the stat ic loads problem. Cards 1 through 7b are till gen¬ erated automat ieally; the user does not have to develop this data set. The ...it a set will reside in the user's library under the name XYZ .NASOl'T. DATA. ihe eemplete echo shown in figure 2-8 is provided twice. One eepv can :>«• used to mark up tor torming a new data set, while the other eopv remains as a clean record oi the input for the current ease. — rma11 ed Print- ■Out ol i Input Data ills S. cc l i on oi t he pr i n L out put organizes a 11 t ho input data into logiea and prints out t lu ■ data w i t h se 1 t'-exp 1 ana lory hit >nt i t ieat ion headings. .hi.- output is illustrated in figure 2-9 tor the sample ease. the data are or.-, in i ;:ed into tin* ! ol lowing major groups: Case title cards Program size data Acceleration data transfer control parameters Program data management control data (restart option) Program control data Vehicle initial conditions Initial mass/node point deflections (read from XYZ.NASOUT.DATA) Generalized surface data Corresponding mass and beam numbering (RUNMOD = 2 only) Mass data Node point data (optional) External spring data (optional) Material properties Internal beam data Unsymmetrical beam data (optional) Plastic hinge and end-fixity data (optional) 01eo strut beam data (optional) Nonlinear beam data (optional) Volume penetration data (optional) DRF elements (optional) Volume change data (optional) Nonstandard maximum deflections (optional) Nonstandard maximum forces (optional) Load interaction curve sign conventions and curve data (optional) Nonzero angular momenta, cross-products of inertia, lift constants (optiona1) 2-95 L.'-. ■ - ** ■ FIGURE 2-7. LARGE TRANSPORT AIRPLANE MODEL - SAMPLE CASE ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 1 2 3 4 5 6 7 8 ' CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 * 1 2 1 LT.SAMPLE.DATA 00000010 3 21 MASS/28 BEAM TEST CASE ONLY- -NOT VALID AIRPLANE MODEL 00000020 4 12345678901234567890123456789012345678901234567890123456789012345678901200000030 * 5 NM MSP NB NLB NNP NPIN NUB NDRINOLEO NACC MVP NVCH NMTL ND 00000040 6 21 19 28 1 12 10 4 1 2 19 0 0 0 0 00000050 7 NVBM NFBMNVBMNNFBMN NKM NHI NPH TOL1 TOL2 TOL3 NSC NICNAERONBOMB 00000060 8 0 2 0 2 0 2 2 1000 1000 1000 110 1 00000070 9 NSCV NLICNHRGR NBAL ICDICITR 00000080 ", 10 1 15 0 5 1 1 00000090 11 GRAPHICS 00000100 12 00000110 13 200 00000120 l 14 ONE RESTART ' AND ONE SAVE CARD FOLLOWS 00000130 15 00000140 16 00000150 17 IPRINT DELTAT TMAX PLOWT FCUT RUNMOD 00000160 ? 18 200 .000050 0.1 0.000 50. 1. 00000170 19 BLANK CARD FOLLOWS 00000180 * 20 00000190 T 21 NSF NTF NOE NSPD NED NS NRP NIMP NBC : PRINT DATA 00000200 / 22 1 1 1 1 1 0 10 1 00000210 r 23 NMEP NNEP NBFP NBDP NSTP NSEP NENP NDRP NPLTNPFCT : PLOT DATA 00000220 ' 24 0 0 6 0 0 0 0 0 0 0 00000230 3 25 INITIAL CONDITION DATA : 3 CARDS 00000240 ' 26 3140.00 000.00 3 00.00 0000025D 27 000.00 0.1 000.00 00000260 , 28 000.00 .01745 000.00 000.00 000.00 0.001.1463E-07 00000270 * 29 MASS DATA : NM CARDS 00000280 30 1585.0 199.0 0.0 220.0.11514E+05.4 E+05.15 E*05 100000290 31 9064.5 300.0 0.0 218.7.89080E+05.3 E+06.99 E+05 200000300 32 15318.1 460.0 0.0 208.7.16278E+06.96935E+05.10309E+06 300000310 : 33 13096.0 620.0 0.0 206.0.19627E+06.66715E+05.79389E+05 400000320 34 21752.6 820,0 0.0 200 . 2.49106E+06.12567E+06 . 14651E+06 500000330 35 7901.5 960.0 0.0 212.4.81383E +05.12 E+06.2 E+06 600000340 36 9190.7 1040.0 0.0 207.9.87536E+05.14 E+06.2 E+06 700000350 37 9938.4 1200.0 0.0 225.1.88098E *05.18 E+06.3 E+06 800000360 38 5702.0 1359.9 0.0 260.0.96249E +05.41788E *05.26039E +05 900000370 39 6175.2 1570.0 0.0 302.3.21530E+06.10798E +06.15863E +06 1 000000380 40 9670.6 801.3 118.3 188.3.15213E *05.13858E *06.36 E+06 1100000390 41 10065.6 852.3 271.8 203.1.19510E+05.12263E+06.3 E+06 1200000400 42 £286.5 943.5 430.7 219.9.72715E+04.5Z619E+05.11 E+06 1300000410 43 3759.0 1045.8 583.5 243.5.44083E+04.25823E+05.60 E+05 1400000420 44 1542.3 1112.6 740.6 255.1.16708E+04.90137E+04 . 18 E+05 1500000430 45 5400 . 0 719.0 321.6 165.8 3651.56 25746. 29374.6 1600000440 46 5151.0 902.8 551.6 188.1 3712. 24588.2 28178. 1700000450 47 1922.0 887.0 131.6 90.7 371. 1600. 2000. 1800000460 48 238.0 279.0 0.0 85.0 24. 300. 500. 1900000470 49 1000. 300.0 0.0 238.7 1000. 1000. 1000. 2000000480 50 1000. 300.0 0.0 238.7 1000. 1000. 1000. 2100000490 FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 1 OF 9) ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 1 2 3 4 5 6 7 8 CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 51 NODE POINT DATA : NNP CARDS 00000500 52 1 5 775.1 48.0 181.0 00000510 53 1 11 773.9 118.3 186.3 00000520 54 2 11 887.0 131.6 179.7 00000530 55 3 11 887.0 131.6 179.7 00000540 56 1 12 811.8 321.6 199.6 00000550 57 1 14 994.5 551.6 220.5 00000560 58 1 15 1148.0 740.6 261.3 00000570 59 2 15 1112.6 740.6 255.1 00000580 60 1 16 735.7 321.6 199.6 00000590 61 2 16 719.0 321.6 165.8 00000600 62 1 17 918.4 551.6 220.5 00000610 63 1 2 279.0 0.0 147.5 00000620 64 EXTERNAL SPRING DATA : 2 X NSP CARDS 00000630 65 1 3 70. 0.35 175000. 00000640 66 2 3 82.7 0.35 300000.0 00000650 67 3 3 72.7 0.35 100000.0 00000660 68 4 3 70.0 0.35 300000.0 00000670 69 5 3 64.2 0.35 300000.0 00000680 70 6 3 76.4 0.35 300000.0 00000690 71 7 3 69.9 0.35 100000.0 00000700 72 8 3 69.1 0.35 100000.0 00000710 73 9 3 64.0 0.35 300000.0 00000720 74 10 3 82.0 0.35 300000.0 00000730 75 11 3 28. 0.35 100000. 00000740 76 12 3 14. 0.35 100000. 00000750 77 13 3 11. 0.35 100000. 00000760 78 14 3 7. 0.35 100000. 00000770 79 15 3 3. 0.35 100000. 00000780 80 16 3 29.8 0.35 272000. 00000790 81 17 3 28. 0.35 272000. 00000800 82 18 3 19.65 0.30 100000. 00000810 63 19 3 16.45 0.30 100000. 00000820 84 1.3 1.5 1.6 10. 70000. 7000. 0 . 00000830 85 1.3 1.5 1.6 10. 140000. 14000. 0.00 00000840 86 1.0 6.0 10. 21. 115000. 90000. 0.00 00000850 87 1.0 1.1 2.0 3. 0 340000. 200000. 0.00 00000860 88 1.0 1.1 2.0 3. 0 340000. 200000. 0.00 00000870 89 1.0 1.1 2.0 3. 0 340000. 200000. 0.00 00000880 90 1 . 6. 10. 21 60000. 48000. 0.00 00000890 91 1 . 6. 10. 21. 68000. 48000. 0.00 00000900 92 1 . 1.1 2.0 3. 300000. 30000. 0.00 00000910 93 1 . 1.1 2.0 3. 300000. 30000. 0.00 00000920 94 1 . 1.5 2. 7. 330000. 330000. 00000930 95 1 . 1.5 2. 7. 330000. 330000. 0.00 00000940 96 1 . 1.5 2. 7. 330000. 330000. 00000950 97 1 . 1.5 2 . 7. 330000. 330000. 00000960 98 1 . 1.5 2 . 7. 330000. 330000. 0.00 00000970 99 1 . 8. 9. 16. 10000. 30000. 00000980 100 1 . 8. 9. 16. 10000. 30000. 00000990 101 2. 2.001 8.05 8. 051 62200. 294700. .02 00001000 FIGURE 2- 8. ECHO OF THE INPUT DATA (SHEET 2 OF 9) t ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 12345678 CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 102 2 2 .001 5.75 5 .751 16150. 51500. .02 00001010 103 INTERNAL BEAM DATA : N8 CARDS 00001020 104 1 2 32.00 0.00 6.20E+04 3.70E+04 0.00 96.0 96.0 500001030 105 2 3 36.00 0.00 7.70E+04 4.30E+04 0.00 99.0 99.0 500001040 106 3 4 36.00 0.00 8.60E+04 4.30E+04 0.00 56.0 56.0 500001050 107 4 5 59.00 0.00 13.60E+04 4.65E+04 0.00 56.0 56.0 500001060 108 5 6 59.00 0.00 11.60E+04 4.65E+04 0.00 66.0 66.0 500001070 109 6 7 57.00 0.00 13.60E+04 5.70E+04 0.00 88.0 88.0 500001080 110 7 8 48.00 0.00 11.40E+04 6.20E+04 0.00 91.0 91.0 500001090 111 8 9 37.00 0.00 5.60E+04 3.35E+04 0.00 51.0 51.0 5000011C0 112 9 10 25.00 0.00 9.00E+04 9.50E+03 0.00 50.0 50.0 500001110 113 5 1 11 54.00 4.800E+04 1.59E + 04 1.14E+05 0.00 1.0 1.0 500001120 114 1 11 12 63.20 2.600E+04 1.14E+04 1.02E+05 0.00 1.0 1.0 500001130 115 12 13 56.3 1.000E+04 4.70E+03 5.80E+04 0.00 1.0 1.0 500001140 116 13 14 40.7 4.800E+03 2.00E+03 2.10E + 04 0.00 1.0 1.0 500001150 117 14 1 15 20. 2.700E+03 1.20E+03 8.00E+03 0.00 1.0 1.0 500001160 118 1 12 1 16 8.0 2.208E+02 7.32E+02 1.00E+02 0.00 1.0 1.0 400001170 119 1 14 1 17 8.0 2.208E+02 7.32E+02 1.00E+02 0.00 1.0 1.0 400001180 120 2 11 18 0.01 150.0 239.E +00 239.E+00 0.00 1.0 1.0 100001190 121 3 11 18 0.01 150.0 239.£+00 239.E+00 0.00 1.0 1.0 100001200 122 1 2 19 0.01 5. 32.5E+00 32.5E+00 0.00 1.0 1.0 100001210 123 6 12 40.7 4.800E+03 2.00E+03 2.10E+04 0.00 1.0 1.0 500001220 124 9 14 40.7 4.800E+03 2.00E+03 2.10E+04 0.00 1.0 1.0 500001230 125 12 0 40.7 4.800E+03 2.00E+03 2.10E+04 0.00 1.0 1.0 500001240 126 2 20 10. 1.0 1.0 1.0 0.00 1.0 1.0 900001250 127 2 21 10. 1.0 1.0 1.0 0.00 1.0 1.01000001260 128 15 16 20. 0.00 1.0 1.0 500001270 129 2 15 2 16 20. 0.00 1.0 1.0 500001280 130 15 0 20. 2.700E+03 1.20E+03 8.00E+03 0.00 1.0 1.0 500001290 131 2 15 0 20. 2.700E+03 1.20E+03 8.00E+03 0.00 1.0 1.0 500001300 132 BEAM END FIXITY CARDS: NPIN CARDS 00001310 133 1 2 0 0 11 0 . 0 . 0.0088 1.15 00001320 134 2 3 0 0 11 0 . 0 . 1.25 1.25 00001330 135 3 4 0 0 11 0. 0 . 1.1 1.1 00001340 136 4 5 0 0 11 0 . 0. 1.15 1.15 00001350 137 5 6 0 0 11 0 . 0 . 1.25 1.25 00001360 138 6 7 0 0 11 0 . 0 . 1.25 1.25 00001370 139 7 8 0 0 11 0 . 0 . 1.15 1.15 00001380 140 8 9 0 0 11 0 . 0 . 1.0 1.0 00001390 141 6 12 0 0 11 0 . 0 . 0 . 0 . 00001400 142 9 14 0 10 1 0 . 0 . 0 . 0 . 00001410 143 UNSYM BEAM DATA: NUB CARDS 00001420 144 15 16 1 .08 00001430 145 2 15 2 16 -1 .08 00001440 146 15 0 1 .3 00001450 147 2 15 0 -1 .3 00001460 148 OLEO BEAM CARDS: 00001470 149 1 . 1 00001480 ISO 2 11 18 20.982 10855. 739. 1.4 20. 00001490 151 1 2 19 16.965 3420. 289. 1.4 16. 00001500 152 2 11 18 4.0 0. . 1E06 . 1E06 5000. 1 00001510 FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 3 OF 9) ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 12545678 CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 153 1 2 19 3.4 0. 50.E03 50.E03 500. 00001520 154 45 00001530 155 -0.2 352.7 00001540 156 -0.0964 352.7 00001550 157 -0.0376 10.24 00001560 158 0.124 23.62 00001570 159 0.341 22.21 00001580 160 0.607 17.90 00001590 161 0.953 8.24 00001600 162 1.46 3.38 00001610 163 2.17 2.13 00001620 164 3.07 1.25 00001630 165 4.13 1.56 00001640 166 5.21 1.79 00001650 167 6.20 2.46 00001660 168 7.05 3.58 00001670 169 7.72 6.26 00001680 170 8.20 13.47 00001690 171 8.53 31.50 00001700 172 8.74 62.40 00001710 173 8.91 64.06 00001720 174 9.12 34.22 00001730 i7r 9.41 16.03 00001740 176 9.83 8.42 00001750 177 10.39 5.24 00001760 178 11.08 3.68 00001770 179 11.87 2.93 00001780 180 12.71 2.77 00001790 181 13.54 3.38 00001800 182 14.27 4.93 00001810 183 14.83 9.33 00001820 184 15.21 25.53 00001830 185 15.40 153.79 00001840 186 15.4518 1000. 00001850 187 15.4539 1000. 00001860 188 15.4581 1000. 00001870 189 15.494 403.85 00001880 190 15.61 67.70 00001890 191 15.84 22.15 00001900 192 16.18 9.93 00001910 193 16.65 5.31 00001920 194 17.21 3.02 00001930 195 17.82 2.07 00001940 196 18.39 0.92 00001950 197 18.82 0 . 00001960 198 18.97 10. 00001970 199 22 . 10. 00001980 200 DAMPC CARD 00001990 201 .05 00002000 202 NONLINEAR BEAM OATA: NLB + CARDS 00002010 203 3 11 18 1 7 2.0 00002020 FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 4 OF 9) ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 12545678 CARD NO. 123456 78 90123456 7890123>+5o 7890123456 7890123456 7890123456789012345678901234567890 204 DRI CARD: 00002030 205 2 21 00002040 206 POS •FORCE CUTOFF:NFBM CARDS 00002050 207 2 11 18 428000 1 ,.E10 1.0E10 1.E10 1.E10 1.E10 00002060 208 1 2 19 130000 1 ..E10 78000 1.E10 1.E10 1.E10 00002070 209 NEG .FORCE CUTOFF:NFBMN CARDS 00002080 210 2 11 18 428000 1 . E10 1.0E10 1.E10 1.E10 1.E10 00002090 211 1 2 19 130000 1 . E10 78000 1.E10 1.E10 1.E10 00002100 212 LOAD INTERACTION SIGN CONVENTIONS!NSCV CARDS): 00002110 213 1 2-3 4 5 6 00002120 214 LOAD INTERACTION DATA!NLIC+ CARDS): 00002130 215 1 3 5 1 0 300. 1000. 00002140 216 166000. 20.8E+06 -166000. -20.8E+06 00002150 217 1 1 199000. 45.6 E+06 00002160 218 2 3 5 1 0 300. 1000. 00002170 219 166000. 20.8E+06 -166000. -20.8E+06 00002180 220 1 1 199000. 45.6 E+06 00002190 221 2 3 5 2 0 400. 1000. 00002200 222 210000. 23.8E+06 -210000. -23.8E+06 00002210 223 1 1 185000. 60.8 E+06 00002220 224 1 1 674300. 25.4 E+06 00002230 225 3 3 5 2 0 480. 1000. 00002240 226 00002250 227 1 1 195000. L30.3 E+06 00002260 228 1 1 545300. 28.9 E+06 00002270 229 3 3 5 2 0 540. 1000. 00002280 230 00002290 231 I 1 199000. 137.3 E+06 00002300 232 1 11365380. 35.3 E+06 00002310 233 3 3 5 2 0 620. 1000. 00002320 234 274000. 45.0E+06 -274000. -45.0E+06 00002330 235 1 1 286000. L85.6 E+06 00002340 236 1 1 384400. 79.7 E+06 00002350 237 4 3 5 2 0 620. 1000. 00002360 238 274000. 45.0E+06 -274000. -45.0E+06 00002370 239 1 1 286000. 185.6 E+06 00002380 240 1 1 384400. 79.7 E+06 00002390 241 5 3 5 2 1 960. 1000. 00002400 242 288000. -288000. 00002410 243 1 0-5.2317E06 71.5E+06 00002420 244 1 1 474500. 152.8E+06 00002430 245 6 3 5 2 1 960. 1000. 00002440 246 288000. -288000. 00002450 247 1 0-5.2317E06 71.5E+06 00002460 248 1 1 474500. 152.8E+06 00002470 249 6 3 5 2 1 1000. 1000. 00002480 250 254000. 74.0E+06 -254000. -74.0E+06 00002490 251 1 1 301000. 228.7E+06 00002500 252 1 11.3581E 06 84.2E+06 00002510 253 7 3 5 3 1 1080. 1000. 00002520 254 00002530 FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 5 OF 9) 2-101 ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 1 2 3 4 5 6 7 8 CARD NO. 12545678901254567890125456789012545678901254567890125456789012545678901254567890 255 0 1 210000. -555.88E06 00002540 256 1 1 527700. 107.75E06 00002550 257 1 1 1.5758E06 64.0 E06 00002560 258 7 5 5 3 1 1160. 1000. 00002570 259 00002580 260 0 1 259000. -265.64E06 00002590 261 1 1 572214. 83.5E 06 00002600 262 1 1 804840. 49.9E 06 00002610 265 8 5 5 3 1 1240. 1000. 00002620 264 35.0 E 06 -35.0E06 00002630 265 0 1 198000. -217.32E06 00002640 266 1 1 409460. 50.5E 06 00002650 267 1 1 965217. 37.OE 06 00002660 268 8 5 5 2 1 1320. 1000. 00002670 269 27.2 E 06 -27.2E06 00002680 270 0 1 148000. -91.818E06 00002690 271 1 1 662500. 31.8E 06 00002700 272 9 5 5 3 1 1400. 1000. 00002710 275 00002720 274 0 1 125500. -S4.998E06 00002730 275 1 1 550720. 24.2E 06 00002740 276 1 1 914520. 18.9E 06 00002750 277 NONZERO ANGULAR MOMENTA (NHI CARDS): 00002760 278 16 .1 E06 00002770 279 17 .1 E06 00002780 280 NONZERO MASS ORIENTATION ANGLES (NPH CARDS): 00002790 281 16 -.0872665 .0549066 .05236 00002800 282 17 -.0872665 .0349066 .05236 00002810 285 FORCE TIME HISTORY OATA: NACC + CARDS 00002820 284 3 2 1 00002850 285 2 3 2 1 00002840 286 5 3 2 1 00002850 287 4 3 2 1 00002860 288 5 3 2 1 00002870 289 6 3 2 1 00002880 290 7 3 2 1 00002890 291 8 3 2 1 00002900 292 9 3 2 1 00002910 295 10 5 2 1 00002920 294 11 3 2 1 00002950 295 12 3 2 1 00002940 296 15 3 2 1 00002950 297 14 3 2 1 00002960 298 15 3 2 1 00002970 299 16 3 2 1 00002980 500 17 3 2 1 00002990 501 18 3 2 1 00003000 502 19 3 2 1 00003010 505 0 . -95 00005020 504 1 . -95. 00003030 505 0 . -624 .5 00003040 FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 6 OF 9) 2-102 ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 12345678 CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 306 1 . -624.5 00003050 307 0 . -1861. 00003060 308 1 . -1861. 00003070 309 0 . -4715. 00003080 310 1 . -4715. 00003090 311 0 . -7901. 00003100 312 1 . -7901. 00003110 313 0 . -1991. 00003120 314 1 . -1991. 00003130 315 0 . -2316. 00003140 316 1 . -2316. 00003150 317 0 . -785.4 00003160 318 1 . -785.4 00003170 319 0 . -450. 00003180 320 1 . -450.0 00003190 321 0 . 17445.6 00003200 322 1 . 17445.6 00003210 323 0 . -15419.2 00003220 324 1 . -15419.2 00003230 325 0 . -28188.2 00003240 326 1 . -28188.2 00003250 327 0 . -21394.1 00003260 328 1 . -21394.1 00003270 329 0 . -17818.8 00003280 330 1 . -17818.8 00003290 331 0 . -6240.9 00003300 332 1 . -6240.9 00003310 333 0 . -270.8 00003320 334 1 . -270.8 00003330 335 0 . -258.3 00003340 336 1 . -258.3 00003350 337 0 . 0 . 00003360 338 1 . 0 . 00003370 339 0 . 0 . 00003380 390 1 . 0 . 00003390 341 BEAM LOAD i PLOT PARAMETERS: NBFP CARDS 00003400 342 3 111 0 00003410 343 7 111 1 00003420 344 11 111 0 00003430 345 11 111 1 00003440 346 12 111 1 00003450 347 14 111 0 00003460 348 END 00003470 349 $TITLE =LT.SAMPLE.DATA 1 350 $SUBTITLE =21 MASS/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL 2 351 SLABEl =INITIAL CONDITION STATIC SOLUTION 3 352 $DISPLACEMENTS 4 353 SREAL OUTPUT 5 354 $SUBCASE ID = 1 6 355 100 G -3.089143E-02 0.0 -9.927106E-01 7 356 -CONT- 0.0 -2.240265E-03 0.0 8 FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 7 OF 9) 2-103 ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 1 2 3 4 5 6 7 8 CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 357 200 G -2.848941E-02 0.0 -7.668377E-01 9 358 -CONT- 0.0 -2.228401E-03 0.0 10 359 201 G 1.302763E-01 0.0 -8.132805E-01 11 360 -CONT- 0.0 -2.228401E-03 0.0 12 361 300 G -7.956207E-03 0.0 -4.223564E-01 13 362 -CONT- 0.0 -2.016658E-03 0.0 14 363 400 G -3.881566E-03 0.0 -1.467094E-01 15 364 -CONT- 0.0 -1.310210E-03 0.0 16 365 500 G 0.0 0.0 0.0 17 366 -CONT- 0.0 0.0 0.0 18 367 501 G 0.0 0.0 0.0 19 368 -CONT- 0.0 0.0 0.0 20 369 600 G 3.900044E-04 0.0 -1.395651E-01 21 370 -CONT- 0.0 1.905726E-03 0.0 22 371 700 G -1.741045E-02 0.0 -3.224223E-01 23 372 -CONT- 0.0 2.646158E-03 0.0 24 373 800 G 1.960037E-02 0.0 -8.574680E-01 25 374 -CONT- 0.0 3.925510E-03 0.0 26 375 900 G 1.623369E-01 0.0 -1.646019E+00 27 376 -CONT- 0.0 5.791210E-03 0.0 28 377 1000 G 4.121330E-01 0.0 -2.947555E+00 29 378 -CONT- 0.0 6.380443E-03 0.0 30 379 1100 G -2.376708E-02 -6.204829E-02 4.549811E-01 31 380 -CONT- -6.692741E-03 -2.201437E-03 -5.605556E-04 32 381 1101 G -1.923054E-02 -6.048076E-02 3.946611E-01 33 382 -CONT- -6.692741E-03 -2.201437E-03 -5.605556E-04 34 383 1102 G -1.296112E-02 -1.657883E-01 7.333756E-01 35 384 -CONT- -6.692741E-03 -2.201437E-03 -5.605556E-04 36 385 1103 G -1.296112E-02 -1.657883E-01 7.333756E-01 37 386 -CONT- -6.692741E-03 -2.201437E-03 -5.605556E *04 38 387 1199 G -9.159952E-02 0.0 5.671605E-01 39 388 -CONT- 0.;! -6.671570E-03 0.0 40 389 1200 G -2. lo-iiOSE-Ol 4.138300E-02 2.341778E+00 41 390 -CONT- -1.306025E-02 -6.671570E-03 -9.325834E-04 42 391 1201 G -2.439489E-01 3.842940E-02 2.721848E+00 43 392 -CONT- -1.306025E-02 -6.671570E-03 -9.325834E-04 44 393 1300 G -6.008096E-01 3.054580E-01 6.170235E+00 45 394 -CONT- -2.241265E-02 -1.032134E-02 -1.681539E-03 46 395 1400 G -1.368592E+00 6.399863E-01 1.084585E*01 47 396 -CONT- -2.562700E-02 -7.394243E-03 -5.296096E-03 48 397 1401 G -1.022668E+00 2.900483E-01 9.660551E +00 49 398 -CONT- -2.562700E-02 -7.394243E-03 -5.296096E-03 50 399 1498 G -6.724822E-01 0.0 8.267696E+00 51 400 -CONT- 0.0 -9.067804E-03 0.0 52 401 1499 G -6.724822E-01 0.0 8.267696E+00 53 402 -CONT- 0.0 -9.067804E-03 0.0 54 403 1500 G -2.495207E+00 4.342729E-01 1.459589E+01 55 404 -CONT- -1.709940E-02 -9.067804E-03 -4.925180E-03 56 405 1501 G -2.554651E+00 3.717276E-01 1.491743E+01 57 406 -CONT- -1.709940E-02 -9.067804E-03 -4.925180E-03 58 407 1502 G -2.495207E+00 4.342729E-01 1.459589E+01 59 FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 8 OF 9) 2-104 ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 1 2 3 4 5 6 7 8 CARO NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 408 -CONT- -1.709940E-02 -9.067804E-03 -4.925180E-03 60 409 1600 G 7.919735E-02 -2.893812E-01 1.937819E+00 61 410 -CONT- -1.295901E-02 -9.379078E-03 -1.573280E-03 62 411 1601 G -2.385548E-01 1.247810E-01 2.086104E+00 63 412 -CONT- -1.295901E-02 -9.379078E-03 -1.573280E-03 64 413 1602 G 7.919735E-02 -2.893812E-01 1.937819E+00 65 414 -CONT- -1.295901E-02 -9.379078E-03 -1.573280E-03 66 415 1700 G -6.952552E-01 -3.464461E-02 8.834676E+00 67 416 -CONT- -2.537085E-02 -9.936552E-03 -5.952675E-03 68 417 1701 G -1.0141526+00 6.997874E-01 8.967885E+00 69 418 -CONT- -2.537085E-02 -9.936552E-03 -5.952675E-03 70 419 1800 G 1.832870E-01 -7.628592E-01 6.225001E-01 71 420 -CONT- -6.689243E-03 -2.204068E-03 -5.605288E-04 72 421 1900 G 2.696309E-01 0.0 -8.798568E-01 73 422 -CONT- 0.0 -2.223161E-03 0.0 74 423 2000 G -9.809875E-02 0.0 -8.621072E-01 75 424 -CONT- 0.0 -4.137885E-03 0.0 76 425 2100 G -7.305723E-02 0.0 -7.669372E-01 77 426 -CONT- 0.0 -2.228401E-03 0.0 78 FIGURE ho 1 00 ECHO OF THE INPUT DATA (SHEET 9 OF 9) 2-105 FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 1 OF 16) VEHICLE INITIAL CONDITIONS u4 U SK- 22; 52 — < < Ouj O H H H < > >- z < O U. ^ O t3 ! : «* i/> U MJ < u u a MOO MOO i O O O O O O O aooooooo sB-fO'^ooin® iTIMMO'COCOf'CO IflffllOOHNON mm-toi/iMCMin ONCOO'NNlAO lOoO'^M'O^o'ino'^oooo ooooooooooi/tfr-MWtfMiflinooo — I/I a -o < cm X o ♦- o a o o H to O O W -H «y -e n eo •*> o i l CM o o a o M5 00 O O N Ul H H NHlflN 1/1 sO l/l M CM -I -t C3 O CM O' NOMOff'^O'N a a k» c-» O’ m >3- O’ a o o O’ fM M I H M V > M c i so o r a o M O’ O’ O CM CO a a eo 0 /> o MCMl/ir^fMl/l»0OOO )OOOOOOOOM>«H O ■«MN J M3 CM M3 ' M> CM O OOOOOOOOOOOO MMOO'inMeomiflO'O'o mN(0HI/|HMfl(0#HN ONOOIflCONNlflinWO mooM>r^<7'MOOO'r^o C'CMNO-OOO’t^COinMKV IMCJlfl-CC'lflMHOtfC'CO o o M CO a M3 O Ifl i/i to CM O' cm rs. a o CM CM r- s. O M M3 so o o o o o o M <0 -O (U H K1 H Ul Ifl O ui O NO N s CO m N M) M M HOfI O’ M M CM M) O' • O' M K1 C*. M3 O O O O' O’ co o m -< O' M3 in co O’ o co r-» n. m m> O' O' OMr>.r*.cMO'M^eHHH(0'0(0«0N oooooooooo I I ooaoaaoo O'OOMO'CMrMCM CM >OOOOOOOOOCM*HOMMCOO’MDOO© O D O Q o o SO M Kl O M M> k © co O’ co ©CO © O' O’ CM ©NNNON o m i/i O’ o r* IOC49) ) O' o a O' o CM f-t f* © CM fs. O’ O’ M CM a a CM O’ *H fs. © © OCHHK1NK14HN4 00000000004tflfl44NMNOOO CM CM M K1 O © O O I O O O I H N 4 ’ O’ o o> a o a a o in c- o- O’ o K1 -o o o © m O >—< O M O O 'C CM a © © © M O o o M -0 © O' a a cm r*» O' o in cm © m >0 O' OtOO'(OOff'SC'4HI*lHOIOJ © o © CM m in CM l/| O' CM -« m o- o o o © o Cm © © cn CM M3 N> O © M> I 9 ° m tn Cm CM © o m o o © Kl Z M o o a O’ CM m <-« Ki no cm o 1 O CM © © o o © a a c ci O' o h n to in c HI04IAO4XU H444NI0N' ■& o cm O’ m m o s O' M CM l/l O' (0 H i cm o o m o m o c IHHHCJHCMtMNSH I N MO O |HHH4NCM4HNN4HN^\ IHHCJW1HHHNHNH Hl/lHHrtlM3l/ll/144N 2-107 “AV’rfA'V A*. FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 2 OF 16) FREE FRICTION 801 TONING PLOWING GROUND .PRING LENG1H COEf FICIENT SPRING FORCE FLEXIBILITY .OOOOOOOOOOOOOOOOOOO 0000000000000000000 00000000000000000000 OOOOOOOOOOOOOOOOOOO loaoooooooaooooaooo 1000000000000000000 >000000000000000000 >000000000000000000 >oooooooooooooo<\»moo oooooooooooooor^i^oo >000000000000000000 .• I I I I I f I looaooooooooooooooo OOOOOOOOOOOOOOOOOOO >0 OOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOO •OOOOOOOOOOOOOOOOOO MfW)iru>uuoiAioxMfli/iiouun^u>oo iMfFIWNUOMWKlWRlKlMWMMMrOM ooooooooooooooooao OOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOO oocooooooooooooomw ^r-OEJxJO ^HOOOOOOOCOO'^.J MOOOOOOOOOOOOOOOOOOO HHoIMHHHHHH a. k\ o M ^ fsj «tOOOOOOOOOOOOOOOOOLn® O. UOOOOOOQOOOOOOOOOOMN a 00 • o o y- 00 M OO O' 00 UOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOCSJN loooooaoooaooooooooo •OOOOOOOOOOOOOOOOOOO • OOOOOOOOOOOOOOOOOOO lOOOOOOOOOOOOOOOOOf^O .ooooooooooooooooo^m lO-JOOOOtOfflOQKlMiflN'rtOOff'H >-0000000000000000 >0000000000000000 >0000000000000000 >oooooooooooooomm >oooooooooooooomm vCor'» jroN>N>Nfg>0K>i^rs!r^r^rv l 4'-«c0tn rOOODOOOOOOOOOOOOOOO MOOOOOOOOOOOOOOOOOOO MOOOOOOOOOOOOOOOOOOO -OOOOOOOOOOOOOOOOOOO toooooooooooooooooomifl 0 H 000000 O O O O O o 000000 N O s ^ M H O O o o o o 000000 000000 o o m o o o H H N o « (O 000000 000000 000000 O O O 10 O o O O <0 o o o 109 FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 4 OF 16) >:firooooo©oooooooooO'HM*-*ooo«H.-,oooo o o o o o o o o o o o o I Q O O o C > o o o o < > O o o O ( » o o o o < ] O Q O O t \ fO o O rH , IOhhh, ) ® vO a ( O O a o o o o o 0 0 0 3 O 0 x> o OOOOOOOOOOOoOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOaOOOOoOQOOOOQOOaOOOOOO CSJOOOOOOOOOOOOOOOOOOOOOOOOOOOO NOOOOOOOOOOOOOOOOOOOOOOOOOOOO sOO“ ^-C^CO'HfHOOOOOOOOOOOOOOOOOOOO o o o o o o o o o o a o NO *0 -O -O oooooaoooaaoQoooaaooooaoaoao ■-HOOOOOOOOOOOOOOOOOOOOOOOOOOOO NOOOOOOOOOOOOOOOOOOOOOOOOOOOO > OC'sO> 0 -I 5 CO^-t'HOOOOOOOOOOOOOOOOOOOO aooooooooaaoooaaooooaooo n a xooominooooooooococooooooooo O o ~>OO 0 -t\)MhT^>ini^OOOOOOOOOOOOOOO o o a'NN«>Oa'N-0«0^'CJ^tnrHOoO>-'OOOMMCJ«»H>-«000000 tOJNMNNNHHOO(0(0 oaoooaaaaoaoaoaooaaaoooo o o >000000000000000000000000 oo >-ooo^)^>Ovrooo^oooMcgo'0'inooooo oo HMNJMHMH-OOUlHSONWrflMWNOOOOOOONN ^Nfl3HHHHI/l(7'Hrf^NHNNNN»ONNNHHOOHH CD o o O Q O o O O o o o o o o o o o o o o o D O O O C Q o O O C O 3 o o o o ooaaoaoaaoarooooaaaoaooooooo OOOOOOOOOOOoOOOOOOOOOO-Oa-OOOO <0000000000 rsjt^f'-OOOOOOr>-f>»f^*AOOOOO C\j .0 J5C - 1 OOO>-t*HCMP 0 ^HOOOOOOf'JOM Z T-C ^OO cd h m ifl lti ifl FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 5 OF 16) tooqooooo -C*HO 4 N < \t CM O' H ixi a o-kioco^^joo a H H N M I I N N a O O iflh.rs,r-.r-».rvr^*. oooooooo “JOOQQOOQQ lf)0'K^C'J^O'»“tCNiNA MBOhNCOJ^'J ta-^ffN^NOffloo dH^iflas^inMoo HOOOOOOOOOO aoooooooooo HOOOOOOOOOO 0.0000000000 ->00000000 NHCJhHNCOHQOO I i-* r* O O X o O < o o zoo > 0-0 _) o o O o o a o o x •* vr a o c § o < o o < ggi -> ►JOOOOOOOOO-* HOOOOOOOOOO 20000000000 roooooooooo *1 T*t\-0*+ © *■ H H N T N oooaoaooaoaooooaaoaoaaaoo ooooooooooooooooooooooooo :ooooooooooooooooooooooooo jrs.N->J-csjrHOOOOOOOOOOf^OO-OCvJMOOOO NNN'ONO'JOMifl^O'>0(0'OJlfl^ONON^(OM K» K» < N N H C -» <0 a H H M ^ CSJ O O O O O O ( >oaoooooaoaoaooaoooooooooo ^ooooooooooooooooooooooooo JOOOOOOOOOOOOOOOOOOOOOOOOO )ooooooooooooooooooooooo*or^ OENNJOlfl^HOHNNOSNl/lS9'Hif®OHrt y lo rv r-» < (0 O (0 ^ 9 ^ ' 2-111 FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 6 OF 16) FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 7 OF 16) f FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 8 OF 16) I c ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo ooooooooooooooo OOOOJNN^I^Offl'OJNO OOOOOOOM^» O CD SE -i z a. m UJ X u < a < < O X o-cOooo-oo Ooaoooooaoaoooaaooooaooooaooooooooeiooo oooooooooooooooooooooooooooooooooooooo OOOOOOOOOOOOOOOO^OK^^KlOOOrOO'^^^OOO^O-OsOsOO ^^^J^OO^CO'fCOtOlO'Jtf'JOS'OOOff'O'ff-NWNNNlflMML'lM/UAUlN tfH/llfllfllflUUnLflOU1OOOlflinL/)f0«MWWC0ffl«0NM/l^MKWUfllflfl)^C0O©ff' tM r I O'-o-y>O'^'0N^ W < ♦ z a o o z a> I CM 3 o 2-114 84400 05 7.4/00D 07 i iNrfl^in-cN»0'OHt>jK>^insOKoK(0(ro OQaQOaOQQOQOQQQQQQQOOaaOQQQQOOOOQaQDQOOQQOQaOQOaejQOOOQOQQQO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOlflOCOlfllrtlAOOO-^OO^OOOOOOCOOOfsIOOOOOO o -oo-o r>-^oooocoofiinuuA4vo>Am^ 1 omuimuij) iifliAiAifliA OOOOQQOOQaQQQQOQOOOQQOOQOQQQOQQQOOQQOQOQQQQoaOOOQQOOOQQOClOO OOOOOOOOOf^OI^OOOr^0f s 'OOOOr-4OOOr--(OO<0OOOOC0<0C0O^<^O^r^^^vJ-srO>«rJO^>^^)fMfMfJ vJO>JOOO^^>tHlflr*lfllOlflrtUlHU\iniflOlOOOO(0(DOONMOSNNMMMOM«ONNWCOCOOO>tNO^tf^NNN COCOfflfflCOtOtOfflONNNNf'^Nf'N^^f'OWOOOMKlMiHNlflHPjrJNl/UfllflMNOMSKNOOOff'O'OirOOO'O'O'J FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 10 OF 16) 00000 20 Z.720Q0 07 1.00000 20 -2.7200D 07 1.48000 05 -9.18180 07 OOOQOOQQQOOQOQa OCOOOOCOOOCOOOOOOO o^ooocrooo'oooaoo COOTCOCOCOCTtMO' ? N N N O' O' O' KlO'lflKlKlUlN'-'UlfgNNHHH OQOOQOQOQCaaCiDQO OOOOOOMNONNMWfJN UlOlflUUfllflNlfllflNNNlfllfllfl ■D -H O' O' <7- ooaooooa •OHI'JOtONOO Ln
    r^rH^)l^rg ONftO'NMHO a. oooooooooo'oro'ofsie-^o'^ooo M oooooooQoouifrHifltfiflifltnooo a o a o oacjaaooQoooQc r* O >0 »■« N >f ^ N f^<-»U>{V't'TU1^fJ00O'lfl< oeo-oo •J n«^ o^<\jo-cOo^wO-^eajc NNOWOO''00'SMN^O^O'JWf Q _ H r* rH x o a u/ o o a I O O o O O M O O If) O O X • • CL M o o o INK\U1^N^HNO'NN( OOOO-lOOO ^ MNOO B'O'.f r^otsjr^o-pj^csj N'OHMC'HnJO OOO-OOflJ-JO ooooooooooso^fMLfir^vj-fg^ooo OOOOOOOOoO'0-«f'6^Hr(OOff'9'r(r WNlCO«'fllfl f 'MAlfllOOHHNNNNNMfl(flOOOO 0'0'HO-HO^HO(NNNNNNWNNNMMKIIflWMIflMM O CO _ X so »K N • X h- *» FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 12 OF 16) 508J8D 06 0.0 0.0 0.0 -2.175910 08 O O (NJ O M o O O CM O CM O O O Ifl O M O O O r-i o 90 O OOOOOO 0 0 0^-0 a 0^000 0-00000 P4QOOOO ► 'T O 70 < |M © © x> o rl o ¥-i o o o o o o © o o o Q o o o a a Q O' tr © -o © © r* r-C CM CA ►A fA © o 1 o o o © o o © o ♦A o s0 H > o to o tr o o o CM o o a o © o o o o o •o- a © © © o o © © © © o o © © o o o o o o o o CM o o o 1 o © o O o o o N o CM o o o © o * © o o K1 o * o O Q CM O CM o o o N. o o o o o r* o o o o o © o © o o o © r* r. r*. r. r. o o o o o o a o o a o o 9 © O' M> 1 o o o o o o o o rv o o o o o o o o o o o © Q O o © o o-o© o o o o o © o o o o © o o • o o I’M o o o o Q (A o o o o o CM o o o o o O' o o o © © © o © o o O •-« o © o o © H o a o o o o o o o r- r» o © o © © M> © M> o o o o o o o o o o o o o s a © g 8 a a a a CM s g g 0 O’ a o r. CM © © <-c © © r* © fA K -o •H 1 o H o <0 o o o >0 © CM o o o o o © o o O rs o o o o q -> o a o o o o o © o o © O' o o CM o o o • o o o o o o CM o o s •c o s © o tv, © 3 r. o $ © o s © © © o © o © o o © a 0 a 9 a o a o © CM O' CM © © IA © cm —1 l/l r- r. O' r-» O' © fM © « D O' © r-* i © o o o H o © o o o o o rt o o o o o tr o o o 'O o * o 0 O © o © O o o © o © o o o © © fM o o o o CM ■ .0 o o o O o CM o © o CM 1 o H o o o o © o o o ►A O o O © M o CM o © o © 1 © CM o o o r-4 1 o *H o o o © 1 o H «o •o © ♦A © o o o o o o © o o o «-t rM r~l o o o o tr •H tr © 9 CM © © © to o o o CM M © 'O M> o •C O' ~o o o >0 sO o o o o -0 o o © o © o o © o o © o o o o o o © o CM © © -0 ■ o o o o o © o o o o o ■—c © o o Q o o rH CM o © o o © H >H O O o o © © o o o o o H ft o o © o o H ►A o o o o o © © o 2-119 ■jc-j-y,; i ft ^nIB m m t k tmJkMjL ■/ ♦ ’ • • • ' * ' «<* . • . •* ... V-’-c FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 14 OF 16) 90 Q9WtVS 0 0 SO 0«?8SI Z ooowoo oooooo oooooo oooooo 0000 *-0 CO O' OONONO © © N> O Kt © o K> O O O O' O O O O o vO o o © a o o O NO O' Lfl M <0 O O O CvJ O O O CJ O © OOMOMO © 1 o ro O O O O' o o O O © 'O o o OO^OMO 0 4 0 3 0 0 0 4 OMO csi 40 N 40 o O © © o o © Q O’ o O' O Kt O' K\ O' o- o O' o 40 O' 40 O' OMOOON O O' O O O H ONOOON © O O © in m o o O t~i 1 lews: i ::: • 1 : • i i it I ad-., . . c . axes 1 i : 1 t <. i a.i ! I, ads, > . c. . axes . ! in si- an. tin- loads due to input t i-vt hi st or ies ot external loads at spec i I iid masses, per the Sno-seri s cards. This is the r.ethod used t.. input aero- d’.namii loads into the model lor the sample case. ;. •: Aerodynamic lift, c.g. axes. These data reflects any aerodynamic lilt calculated by means of inputting It on the 1100-series cards. This option is not used in the sample case. The aero¬ dynamic loads calculated using the 1100-series aero data are not included „ne load calculations in NEITOK. 1 here)ore, these loads will not get into the NAS IRAN model to determine tin’ proper balanced initial conditions. • ir.i •: Inertia loads, c.g. axes. The inertia loads are calculated in NT!TOR, as described in Section 2. 1.1.2 above, to achieve a balanced set ot loads for input to NASTRAN. 1 i -■ •: Net loads, . .g. axes. I hose loads are the sum of all the above 1 i. i -. in Hi t 1 ads arc t ;.e input to the NASTRAN static load bit i ",i. I im h : \ c i erat i ns, mass axes. 1 hose .rre the rigid body airplane m cvlciMl ions at time zero at each mass point. As explained in Section 2 . 1. 1 . ■*, these accelerations are ea I culated from the airplane c.g. acceleration, which in turn is calculated from all the loads except inertia relief loads. The mass point acce!erat ions in line A times the mass point inertia matrix violds the inertia reliel loads. Those acce1erations are output in mass axes to facilitate comparisons with KRASH85 time-history cMit j ut at time zero. The accelerations for the latter are also in mass axes. I he two sets of accelerations should be equal lor a properlv balanced set of initial conditions. All quantities shown in this output have the units of pounds or inch- pounds lor loads, and g’s or rad/sec 2 for accelerations. The sign convention is positive forward, right, and down, with right-hand moments about those axes. These data are presented basically as reference information; the user need not examine these data closely. The determination of whether or not the balanced initial conditions are acceptably accurate can be made based on data that are presented at the time zero printout from program KRASH85. (Sec- t i o n 2.3.3). 2.3.2 MSCTRAN Output The output data from MSC/NASTRAN are discussed in this section. Fami¬ liarity with these output data is not necessary to successfully run program KRASH. If difficulties occur in achieving a balanced initial condition, then a review of this data may be necessary to help isolate the problem. 2. 3.2.1 Executive Control Deck Echo This is shown in figure 2-11, and consists of only four lines. These are generated automatically by program KRASH1C. SOL 24 refers to Rigid Format Solution No. 24, which is the small deflection linear static solution. 2.3.2.2 Case Control Deck Echo This is also shown in figure 2-11, and contains only 13 cards. These are generated automatically by program KRASHIC. The output control card DISPLACEMENT (PRINT,PUNCH) = ALL, used in conjunction with the appropriate .101, cards, causes the output displacement vector to be written as data set XYZ.NASOUT.DATA in the user's library. If the user wants to eliminate or revise some of the NASTRAN output data, then Format No. 1020 in subroutine NAST, in program KRASHIC, should be revised accordingly. 2.3.2.3 Input Bulk Data Deck Echo The complete input bulk data deck is reproduced in this echo, shown as figure 2-12. All these cards are generated automatically by program KRASHIC, in subroutines NAST and NAST10. The CONM2 (mass property), PLOTEL (plot data) and EICR (eigenvalue) cards are not used in the static load solution employed (SOT. 24). KRASHIC converts a KRASH85 input data set into a NASTRAN MODEL PARAMETER' OOOOOoOOO* OOOOOOOOOO'HOOO- «oooooooooJlNfJNOOOOO OO jLn^'tni/iN^c'jo^-^ocOLfiLno'O'MOoooo co co iNO'NrviSHjffli/lajocoajNNvjiOiDC-o-ooooo OOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOO (OJ^H-tKlCjMlfl^^JNOfMNOl^l^SNMOHOOOO ^ooooMNjsoowi/ifflii'a NfgMiflmmwHcoiocoo sj O O CJ CJ O' « Jiff HMKNSHrtHMNlMHffNNNN I if ij sfl -O J) U1 ^ I OOOOOOOOOOOOOOQOOOOO OOOOQOO fs.CO -^0000 tfOOOONN^NOfflNUKOff'ff'NNNIil l/l CO H © ® CO (O JOOMNff O' r-» r^- fN. ^HHNS^^^N^JNN oaoooaoaooooooaooooooooooaoo 00000 oo 000 «t s j® 0000000 c 0 c 0 r ^>00000 (O^-r-o-ocorjcoooOJ-^oooooor^fON^r^^oooo CONCJOOMNunOMffHlCOtjfJOOOfflOfflJlff oooo ONNOOff'JJNlflttHaMfflHHlflJll/lKIMMNO®®©® o o z ^ ^ ^ o Z ►•ooo o co a ** O' >.1 OOO o ► ^ cj O '■* u"i t <-• «-< —• < ff J1 Jl -0 (.1 •'i a m tj 9 Ji o O -X O O *— O' ^ <\l in a • a; m cd ►< o o o- ® o W lu. O 2 wi *1 ^ o O — < INNSHHhKIN.O'O'O'C >OOOQQOQOOOOOOOQOOOOOOOOOO >ooooooooi/linooooooiTitninK> .ooooo iinin^ioinooc-do^oooooo^vj-^r-.j-oooo >-c-oo'cooino'r-j-rv0 HMMNiNSffH®JlfffgMHHlf|JlCOJN^lMOOOHrt O O O O O o O I OOOOOOOOOO^OOO ■ SrrtNlO-ffHNffff'OOfJN • ►♦OOOOOOOOOf^OO (HNMHOOOOOOfJOfJ u V O -t -J ~ - U. O 2 X x-- X o u u o LU u u u u > X N X N IMffJl/)N®ff'OH(SJMffJl-CN®®ffNffOOH^fflOO N M H H INKlff®^i/lv0f^c00 k O<-*-c00‘O^fsifn'tf , m^)^® HHHHHHHHHHNCJNNMfJNNfJ FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET ooooncoocioOoanooocioooQaa na n a i ji o a w h m o .♦ f j h c j ® o j ^ ^ N M J CO « h w Ifl C- CJfflHNOOOO 000000000000000000000000 OO N i f m f •» (j « N W -* —> m o <~t o if) yf O trt o o rj fw (J ‘v o sf i/l «r CO O mm i/l ift n fj n O O O -J m 5) ^ m ^ (0 « fj W Ol ff cj (0 H n o o o o OOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOQOOOOOOOOOOOOOOOOOOOO OQOOOQOOOOOOOOQOOOOOOOOO OO ■jfjfjNHS^HHj'oi/iNisoffOiONino'cOMM vj- Q -0 CO © © iNlft.ftfO«aHS^HH*ffN^HKl COCO Wff'HHKlNf/ff'OlOJfflOJOHH/I^N^ff'KlrtHOOtftf rf/gJlt3M[flMl/lHHMMM^NNJJfOJ'>f«lMNOOWW OQoooooaoaoQQooooooooooa o Q J 'J CJ fJ H N ^ M H f o M N O O' CO <0 N l/l O' (0 K1 1*1 CJ M o «M/lNNO(JO C.OOI/ll/lNJ O' O' -J Cj rj X>McOOU1-OMO r '-''-'in>-lr-MO-CO©'OOX>'£» Mfl"iHtf^CJNlfl^lO{yJHO'OON' aooooaonaoaaciaoaooaoaoaaoaoo tHrtMiJjHUMJ J'JHi^tOtO'J'J^CO'OONNMM M 1/1 -t O CJ iOJOJl/lOOWNMN O^I/tJ’MONNMM © J ^JlfJM(0N h l^C0l0Nf/l/lff'M(0«Nff‘ff'OO I 1/1 U1 .£> -t cs» J) iO r OQQOOOOQOOOOQOaaOQOOOQOOOQOQ H* -< H M (0 f U H H -J CO ^ O O OCOtOvf JOl'Jl/lO/lXIHH M o O -♦ O M o ^ XI ►•■' CO a O O tJ U J tu fj O a O M M (0 (0 l/i a .o o 9 co a N - to s o © y ifl .©■ .j- cj csj tfi o m ©■ <-i cm o o m «-h — N O N O H o Crt . —I O' O CM O CsJ O 000000000000000000000000 oo i H iO '' f I/I 'J o O N N N CO lil i/l ff o H O N f W (0 o o O C C CC'-hO ■Ji/lfflffli/li/li/lHM.fi^O oo c- o © ^ «-• ji/ioo-H-*^oc\j.j > yoooM f;HH\rtNHHSO © OOOOOOOOOMOOO*-H»^^OOOOOOOOOCMOO OOOOOOOOOOMOOO^.-iCJMMOOOOOOMOO'X tl II II II II II X >- M I- »- K 4 < < a o a a o a II II II II II II g X>NI-M— Z 444000 LLI M o U> O <0 O J in O ^ CO ff l/l H “1 # M .J ^ H M X ff rj M M l/l 1/1 4 ll M li II II II cr X > N X > N UJ U. Li. Li. L H H ALL OTHERS IN A/P AXES i o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O o O o O O O o O o o o o o o o o o o o o o o o o o o o o o o o o o O O O O o o o o o o o o o o o o o o o o o o o o Q □ Q a co t o o o ^ OOONNW O O O -0 O' M OOO^ ^ M OOOUUAK1 o o O *0 0 r o o o o o o O O O o o o O O O O o o o o o o o o o o o o o o o o o o o o O O O o o o o © o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O o o o o a a ~0 CO Z'-. O' •o o' CO O' ooo ooo in f" -o in vT co O * MON in o k CO O' x* o a CO O in o I ooo -* * O' O' CJ -o 0 in Csl O 0 o a o o ss O -H ooo m o' m CNJ 0 Csj (*1 O N sj- n o > *4 o # o o ooo ui o o ifl o to o n o -j h k in co o O' ki in H 9- O ^ H N O' 0 O <\* CO 3 1 3 O' o O © 3 1 3 3 o o o 3 3 CM 1 o o o 3 CM NO CM CM NO CM CM NO CM CM NO rH NO rH rH NO rH rH NO rH o o o o o o o O o o O o © O O o O o O o O o O o a o o a a o a © a a o a a o © o © n a o NO M3 NO NO CM © o o 3 3 3 I s - r*> O' r"» N- CO NO NO M3 rH rH O rH M3 3 3 NO in uo CM NO NO CM CM NO rH rH NO CM m CM NO O' N N ^ CM CM © o o o in m r-~ o o o o O K o o o rH o o o uo in r- o o o O' O' r* o o o 3 ■o rs. o o o NO NO o o o 3 3 Cs. o o o rH o o o NO a o o 3 3 NO 1 o o o in in no O O O 3 3 M 1 o o ONHM 1 o o o O' O' NO o o o NO NO NO o © o 3 3 NO 1 d d © 3 rH 3 o o uo o O in CM CM D o o O O O © o b o o o o o o O O o © o o a a © © a © a a o © © © a O © m m3 rH © © rH NO r- N N N NO N. NO NO © N» fN. in m CM NO NO NO CM •C'Ofl' r>. N- © rH rH 3 rH NO o o o o o O o o o o O o o o o ■3- 3 o o o o CM CM >3- o o O Cm CM CM o o O NO NO © © © 3 3 © o o O 3 3 O o o o CM o o o o o o o o o o o o o o o rH H CM 1 o o o CM CM NO ( O o O rH rH 3 1 o o o © © rH 1 o o o rH rH o o O CM CM CM f o o o CM CM 3 CM CM CM CM 3 CM NO -3 3 CM rH CM NO NO rH NO CM NO CM NO CM NO CM CM o o o o o o o o o o o o O o O o o O o O O O © O O o o O O O o o O o o o a O O o o O O o a a a o O © o a a o a o o Q Q © o © a a a NO CM rH CM NO O' O 3 m f'- NO 3 O 3 NO rH CM 3 a NO CM no in cm in m in CM o- Nv r*. *3 CM © NO o 3 3 CM rH CM CM 3 ,—1 -o a CM NO m © a? rH M3 NO CM NO 3 3 NO a- in CM 3 o rH © NO © © NO NO CM 3 in © <3 rH rH NO CM CM 3 3 3 rH 3 UO N- © n* 3 o o tt) H o o no n- sO in o rH O' r-C © CO o rH © WHO N Ml H o O' 3 rH uo CM o CM N- O NO 3 O rH o rH rH UO O o U0 3 o v in 'O H o v * g rH cr rH o CM 1 in i CM CM 1 o CM rH 1 CM in cm o rH rH CM l 1 NO rH 1 o r" i rH 1 CM rH 3 1 o NO 1 3 eu i in CM o rH in 1 CM CM 1 o rH 1 CM CM CM CM CM 3 CM CM CM 3 rH o O o o o o o O O o o o O o o O o o o a a a a o 2 a o o o Q o © © o a © o m O' o NO NO rH CO NO CM CM CM © NO © cm rH CM NO NO rH © CM CM 3 3 3 r- m NO © © t O' NO r*. 3 3 rH in o o o o o o o o o o o o o o o © o uo o 3 o O 3 O © N. 3 o o 3 o o o O O o o o o o 3 O 3 o o o o o o © o o © o o o o H o © H o NO o o NO CM O >3 o d >3 <3 d >3 o o 3 UO o rH o o rH NO o CM 1 o o CM © 1 1 O rH 1 o o CJ no CM CM NO CM CM CM CM CM CM CM NO rH CM rH CM rH rH NO rH rH NO rH CM © o o o o O o o o o O o © o © o o o o o o o © o o o O O O o o O o O o o o o O o o o © o O a o o o o a a o o a a o a a a o © o © O © © © a © © a o c *o C J CM o o m O' O' N- O n m n CM CM O O' © O' CM CM CM 3 3 o NO cm in NO 3 CM NO in UO NO O' m >3 3 in O' K NO O' o © N- rH m o NO NO 3 c- o © CM & cj NO CM ■o r>- N~ CM o 3 M3 o O' CM 3 M3 rH rH 3 © CM 3 NO rH 3 o in cm 3 NO NO rH H uo in C- NO NO CM O' n o uo O' NO © M3 3 o 3 f-r CM 3 © 3 3 0 ■o o o cm 3 o •-* o © 3 NO 3 Hi o rH NO ■-* N> © o o O' CM rH O' 3 NO in CM o 3 3 3 o CM NO 3 3 o 3 3 3 3 rH o O' Cm o CJ -i NO rH rH o m m O' rH NO o H CM »h rH rH o rH rH 3 O' CM o NO rH S. 3 rH o rH « 3 CM m o 3 NO CM 3 d o r* CM rH (0IAO3 2-129 956180 01 -1.645120 01 4.784140 03 2.29263D 02 9.18382D 01 9.968400 03 CM CM 10 o o o O o n a o PA CO CO S© to >3- •o CO . h* PA 1 O o O 10 10 PA i o o o rH rH PA i o o o PA PA PA 1 >3* CM CM V© o o o o a o o a rH rH rH 0) CM O' O' i0 fA rH rH CO rH CM CM O' CM O o O o o o o o O o o o o o o O 1 CM 1 O o o CM CM CM o o o o O o o o © o o O CM PA rH PA CM CM o CM CM CM rH CM CM O O o o o O o O o o O o O Q o a a a a a a o a a o a CM rH o s© O' >3- o i0 U1 CO PA rH 1 rH r*. r-* CM N© PA rH o >3- rH >3- rH rH >3- nO V© O' CO CM rH CO PA O' PA CO CM 'O CO >3 P-. CM CM O' O' rH O o O' o o 10 CO CO PA o o K PA -O’ O' o o r>» n- CO CM rH o o PA rH rH CM o o 10 CM CM O' o o CM O' CM o o o o o o oooooo o o o o o o o o o o o o o o o o o o O O O O O CM O O O O O rH Q D o a CM N O vO rv Lf» CM CM PA O' M 10 rv k f" 10 vj- o rH O' S O O VO M M O O H H H V# o O >0 W N rH O O CM sO CM oooooo OOOOOO FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET 5 OF 5) AUGUST 3, 1984 MSC/HASTRAN 8/ 1/83 PAGE FIGURE 2-11. MSC/NASTRAN EXECUTIVE AND CASE CONTROL DECKS (SHEET 1 OF 2) FIGURE 2-11. MSC/NASTRAN EXECUTIVE AND CASE CONTROL DECKS (SHEET 2 OF 2) KRASH MASS POINTS CONVERTED TO NASTRAN GRID CARDS o o o o o O-OO'CO'OOvOO-C^vOO^OOvOO'OOvOOOOoOOOOOOOOOOOOO'OO'OOO O O O O O O O 0 4 0 4 0 r'*f\J<7-CM0'0JN1- s 3-or^oinMa'oc'fv^ooncooo'csjr^ cooMtoocJoa>OvOMcjMocOKif^vfr^o^csj 0>-<4r-IO>-40'eOOMMK>COtf'04 0'4cOr0 04 rHU10r-40K>ir|'OrO#H(SJ«0>H-yK>ChMO xpr^9-9'ooep^-»noor^^rrtCNj-« • <\J • fO .4 • l CO O tSJ 4 COH^HCOHlflH'firlitr IMONOI » • (0 • O' I ^ H H H > O CD CD CD CD • CD O O o o n r» ooooooooooooOOOOOOOOO OOOO O o O O O O O o o o o o o o o o o * , -«*C>j*r0*4*tf1*N0*r^* c 0*0'*O*rH*C\l*K1*4*in*s0*r^*C0*0'*O*r-t O Q Q O Q o O O O QHDHQhQHDHQHQHQHDHOHQNQN tfKKffttKaKCCIiaKKKKftaKaKQ: .«/V«Vv>tD*CD*CD*CD*tD*CD*CD#CD*CD*CD*CD*CD*CD*CD*CD*CD#CD*CD*CD*CD*C!>*< FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET >00000000000000000 «e -i in o CQ f-1 O' >}■ r* 3 <0 O' -< -* Z HHHHNNtrtWrtHHHH-lfgNHHNNHHHH »H oooooooooooooooooooooooo ooooooooooooooooooooot ooooooooooooooooooooo< hhh^nnmmhhhhhhnnhhnnh. ooooooooooooooooooooo< ► v>aaa:a.a:a.G:ci.a:a.Q:Q.a:cia:a.a:a.tta.o:c FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 2 OF 11) INITIAL CONDITION STATIC SOLUTION ro • eg ■ <\i • .# • r- • ifl • W • • *o -O' • • <0 • so • o ■ ® mo^o>3 , o«oor«.orooooKocooo'oioo^o^OMoo'0OUSfOOOOO'ff'(OK> oo-*^tOooocoo-L^.X)-«coor'~L/l>Of-«iflin oo®M^oooow>eoN<^iAff'Ui'3-»H CM CM iH rH rH o ■ o • o ■ o • o • o ■ o ■ o • o • o • o • o • o • o • o -o ■ o • o • o • o • o • oooooooooooooooooooooooooooooooooooooooooo >-4CgKt<^(n>Ah>®0'Oi-i«Mt04’LntOJ|NJUlNH(OM>'HOOHO >* * JHNHIflHMH J'HvOHsO HNHMH N I/I N U) tfl » - ui cr r» >»■ r-c >o ki 3 «H X to jooooooopoooS 300000000000* jr-ir o o o o o o CM o o o o o o o o © • CM o o o o © o o o o o • o o o o o o o o o m o o o o o o o o o • moo o o o o o o o o o o o o o o S* O o o © o o o o o • >0 0 0 o o o o o o o o • o o o o o o © o © o o o o o o o o o -« O o o o o o o o o o NON o o o o o o o o o mom © o o o o o o o o o o / SS3 ; o o O ( o o o * < : h h ri a . 05 U o o o o © o 10 b- D < 05 O o o o o o o o o o o o o *000*0*00 QfNNNONHNN » o * * * a. * x: * * «* u * * * a. to t- 3 < tO U o o o o o o o o o O © O *000*0*00 ttmmmcrmMHmm < < >- CO (0 < ko***a*x:**- m b- 3 < to o o o o o o o o o o o © o * 000 * 0*00 WI-3 o o o o © o * o o o oc in m m FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 4 OF 11) PBAR* 5000 5000 29.50000000 25250.00000000* 5000A * 5000A 58000.00000000 81250.00000000 MAT1* 5000 10000000.00 5800000.00 * 5000B o o o o o o o o o o • o co o o o o o o o o o o o o o <$■ • O Kl o o in V- 3 < CD U 4 $ O ooo o oo ooo o oo ooo o oo ooo o oo * 000 * 0*00 * 000 * 0*00 ttNNNKNHNN 4 < l- < < V- CD <0 4 CO CO < • u * **o.*r**wo***Q. * r * * c OOO O OO OOO O OO ooo O OO ooo o oo * 000 * 0*00 * 000 * 0*00 QCC0OC0QC<0 n n co •ffl-off' • cr co o ■ o n h • h co n • cm o- i O CM O M O CM O NO o M O NrtOHO r-i r -1 vjD ) H O (O O N > • O CM O • ^ ^ >r • >y >o ) tt ' H S H ff 1 «H l/l O to o S O N oo-o • o m tfl • M SO • H J) H M H O ‘ ISJ O H ■ N O H r. z o*o *01-0 r z t: z 0*0 0*0 z ^ z z z z z z z 0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0 0!-0*0»-0»0h-0*0t-0*0h-0*0t-0*0>-0*0k-0 ozouiozoujozoaiozoarozouiozouiozoutozo 'ujN(jtoiuou^ujff'uoiiJOUHujH z a: r a Z a z a z a z QtHiHctHZH rtnnrinnnnnnnnortn azcczcezazacza ooooooooooo • u.*z*ii-*r*u.*z*u.*r*u.*z*u.* z z 0*0 * o o ut o Z o U CM U! CM a H I H o o u. * £ * z z 0*0 * o ►- o UJ o z o u M tU M 0*0 * o >- o u> o z o u w -f CC H Z H ° 2 U. * Z * z z z 0*0 5 * O H- o * o U* O z O uj O o 1/1 IU I/I u Displacement Vector Figure 2-14 shows a sample of the displacement vector output. These daLa represent the desired solution. The three translations and rotations at each grid point in the NASTRAN model are shown. The sign convention for these displacements/rot ations within the NASTRAN model is as follows: T3 Positive deflection up, inches R1 Positive rotation left wing down, radians R2 Positive rotation nose up, radians R3 Positive rotation nose left, radians All deflections/rotations are measured in an axis system that is parallel to the c.g. coordinate system defined in Section 2.2. The grid point identifications within NASTRAN are related to the KRASH85 mass and mode points as follows: Node point (I, M) becomes grid point (100*1 + M) e.g. Node point 11, 2 becomes grid point 1102. Hass point 5 becomes grid point 500. In figure 2-14, grid points 1199, 1498 and 1499 do not correspond to any node points in the KRAS1I model. In the KRASH model there are two transverse beams attached to mass 15 and one to mass 12; i.e., beams which connect laterally between mass 15 (and 12) and a phantom (unnumbered) point at the same location on the opposite side of the airplane. For these lateral beams, a grid point on the airplane plane of symmetry (y * 0) is established in the NASTRAN model in order to constrain the deflections of lateral beams. Grid points 1199, 1498, and 1499 are all such constrained grid points. The deflections and rotations for grid point 500 (mass point 5) are all zero. This is because mass point 5 was specified by the user to be the con¬ straint point in the model. This was done by inputting NBAL = 5 on card 60 of the input format (figure 2-3). This can be seen on card sequence num¬ ber 90 in the input data echo for this sample case (figure 2-8). 2.3.2.6 Load Vector Figure 2-15 shows the vector of applied loads for the sample case. These are the NASTRAN input net loads generated by KRASHIC in subroutine NETFOR. The sign convention for these loads is the same as for the displace¬ ments, as defined in the previous section. The loads shown for grid points 201, 1102, 1498 and 1502 are the result of using F0RCE1 type cards in the •C O O X> •£> C O 0 -0 •£> -0 .0 >0 yj f J J 0 >C 4 >O'O'O'C 0-0^0-0 0 uufiifluiuunuiinuunuiuiui >T m '-1 ro rO M ^ r/» fO ^ f -1 rg c>j '•j (Ni c-j c\j «m f>J cj c\j r>i <\j tsj I^^OOOOOOOOOOrHrHOOOOOOOOOOO ■ OOHrtMNifinUl'O 0 NOOHHHtgJI 0 Ul 0 0 NH IftJlflHHHHrtHHHHHNUlHHHHrtrlrtHHHN » oooooooooo oooooooooo (OOOOOOOOOOOOOOOOOOOOOOOOO lOOHHHM^inUlil-ONOOHHHM^l/'Ul -O -0^0 INlflrtHrtHr-IHHHHHNLnHHHHHHrtrtrtHN ><-«rHOOOOOOOOOO*-H*HOOOOOOOOOOO INl/lHHHHHHHHHHNIflHHHHrirtHHHHiJ 1 III 111 Lli Ll) 111 111 111 III Li-I Li-1 Li.i LU «X it-Kk-f-K-t-i-H-k-^-^-k-araaaaaciaraaaoicro iOOOOOOOOOOOO«*«t«X«x«X V) o o a «H k> ui o i i i i i i i i i i i i • • i i i * t QZ^MW ?lfl ON(09'OHPjMsnnON®ff' a Di/tiftini/iifltfiflt/iiA o o ■*> o -c -o -o -o o «* O LJ M Oai^. O' >3* >t O' ** MM NI NI NI NI NI NI NI NI NI O' o o o O o o o o O O O O O O O o O o ui UJ UI UJ UJ UI IU UJ UI UI UI UI UJ UJ UJ UJ UJ UJ in m m in O' O' ^ CM CM o o o NO o NO rH rH UI NI NI NI NI CO CO NI O' O' CO co CO K p"- r- h* vO m in m m N Mfl O o rH rH rH CM CM CM nO NO CM in m m in m m h so M» m in m ni ni NI CM cm m o o O O CM CM co 0 s O' CM CM CM s. rv m m O o O O O O o o o O o o O M> sO vO sO O NI NI s© CM CM o o O' O' O' m m m O' O' nO o O O o o o O o o o o O o o o in m i m m i i o O' O' h in iiii m 1 o o o- i O' 1 0* H 1 rH rH 1 in i m i ui 1 o o O ni NI NI NI NI NI NI NI NI ni NI NI NI NI NI NI NI CM NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI o O O O O o O O o o O O o © O o o O O o O O O O O O O O O O O O O © UJ LU UI UJ UJ UJ UJ UJ UJ UJ UJ UJ UI UI UI UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ in rH pH © o in M> M> CM O' NI NI NI NI O' O' O' H CO CO i-H rH rH P^ N- n- CO <0 O' rH nO rH M3 o O m pH CM m o O M NI NI NI NI m m m ni o' O' in m m m m sO M> M> o o NO >X> nO O CM O' O' o CM |H in CM O' O' O' O' V* m m in h rn pH h*. r-. p*. o O o UI m o rH CO O' o CO CO 'O O in M> m H © H r-i H pH H H H N N N N K| O st n- N* p'. O' O' O' nO sO O' NI r^- co O' CM CM pH pH o O' CM O' CO O O O o O' 'O sO M3 v© sO K rs. NI NI o CM NI CM CM CM CM O NI o o O' SO O' P-. ni CM CM CM CM v© M3 s© O NI NI o o o o o NI NI NI O' O' CM CM rH CM CM 1 CM 1 CM CM 1 H 1 o o «H cm ni m \o CM 1 CM 1 CM 1 CM MD >© vO H f>- 1 1 1 1 1 1 N» O' i O' O' O' T O' 1 O' O' O' 1 O' 1 CM CM * CM NI NI NI NI CM CM CM CM CM 0'0'OOK\K1NIAU|OONNNNN(MU|ID'0000 UJ > o O O O o o o o o O 0. 0. NO nO 1 M) 1 •*© O H rH CM 1 III CM 1 CM 1 o o rH rH 1 rH 1 rH 1 rH 1 rH 1 CM 1 CM 1 'f O O o pH rH rH O O rH rH pH rH pH O O O rH O o © rH pH © O O O O pH »H pH rH »- o o o O o o O O o o a O o O O O O O O o o o © © o © O © o © © © © © 1 1 1 1 i 1 1 1 H- H- i 1 1 1 1 4- H- H- ♦ *► H- ♦ H* ♦ ♦ H* H- H- 1 1 1 1 z UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UI UJ UJ UJ UJ UJ UJ UJ UJ UI UI UJ UJ UI UJ UJ UJ UJ UJ UJ UJ Ui UJ NO K in O' 0- O' rH NI CO NI nO M> >© rH UI O O CM CO CM O' O' oo N| <9 pH O pH m v0 O' 'O f". I*" H NI CO m o NO CM M> o in CO SO N. N O N CO CM in UI VO v© m n. in 00 rH 00 s© © O' U| o NI z <0 CM NI m o- O' so O' nO MMHiHHO £ © n. N. O' rH O' v© N** O' pv O- CO rH O' CM sO NI CM nO O' CM K N| NI N O CM N co 'O SO v© in O' m NI 00 NI NI M3 CM O' CM sO UJ O' NO rH CM O- o O NI CM m •O O' NI NI sO N| rH o v© CM CM 0- 'O- O' O' o O' 00 O' CM N. M> v© Q 9 O O' rv co O' rH o 1 1 1 1 1 o rH NI CO H CM 1 1 1 1 1 NI N. MUMNvO rH O' CO CO rH rH rH rH CM pH © © * © « 1 1 1 _J CM CM pH rH CM CM rH pH pH rH rH pH pH rH pH CM pH pH z o o O O O O O O o O O O © O o O © O < Q. l 1 1 1 111 1 1 1 | 1 1 I 1 1 1 1 —1 UJ UJ UI UJ UI UJ UJ UJ UJ UJ UI UI UJ UJ UI UJ UJ UJ a © r- CO o o o NI O- rv O' in O' m €0 M3 00 CM O' CM 01 CM CM N- CO CO O NI 00 V© o NI K NI O © © O' O' CO M K- CO O CO co ni O' m CO m h*. CM r*. 00 CO © O' © in < & CO K co cm o O' o CM fM CM NI f'. NI NI p". © o o UI M in O' o O' r-i O' O' O' O' '© O' CM o o o o O o o o O O o o o CM o 'O M> O rH CO O NI O' o o NI N NI oo CM 00 O' O' <© o o o < o o o o o o o o o o o d s0 1 vO 1 rH 1 pH O O’ NI NI >6 CM o o 'i' NI O' CM 1 pH CM 1 NI 1 NO Pv 1 o O o CM CM rH NI NI O' CM CM pH rH CM CM CM CM CM rH pH pH O o o O o CM CM o pH iH CM CM p z o o O o o o o O O O o o O o o © o o O o o o o o © O O o O o O a O O 2 o 1 1 1 1 l i 1 1 1 1 1 1 1 1 1 1 1 1 4 ♦ 1 1 + 4 1 1 1 1 ♦ 1 i 1 1 i w UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ uj uj uj uj ui UJ UI UI UI UJ UJ UJ UJ UJ UI UJ UJ UJ UJ UJ UJ >• t NI rH NI NI m CM o CM sO o- eo O' CM CM s© n© O CO CO m O' O' O' <0 O' CM O' CM rH O' n- O' M3 NI —i D rH O* 4- sO O NO o m CM nO CM O' o O O O' N- CO N CO sO O' O' o O' o CO NI 00 O' O' V© o O' CM 2 ~J rH O' CM m CO o O NI NI NO o pH ■H O' M O O m v© fv N. CM >© CM m r- m pH © NI © K O O O' co CM sO H O' pH o NI rH n0 NI n© .0 O' M O' to co CM O' m O' L0 O' in O' PM O CM M3 O' in CO CO o U| CO O' o- CM CM K CM O' O' UI 00 ro o s© CM CM CM O' m O' oo rH m pH NI O' o o UJ CO < o CO NI O' CO o o CO n- O' >0 rH NI O' CM CM pH rH 0- O NI O N> >* m O' O' NI O' O' O © M> © NI M NI CM rH r- NI O o NI rH rH •H O' CM rH rH pH O' CM CM •© pH H O >© CM CM CM N* CM fs. N© rH rH CM O' r*. CDCDOCDCDCDCDCDOO0CDCD OOOHOOOHOOOOOOHCMiOO'OHOOHeOO'OiHCMOHCMOHOOOO MOOOOOOOOOOOOOOOOO'OOOOOO'O'OOOOOOOOOOOO HWftlM^UJin'«NC00'OHHHHHNNM'0^0 , 'tlfllfllfl'0'0'0NN«)0'OH ^ HHHHHHHHHHHHHHHHHHrtHHHHNN M O a 2-147 £hk FIGURE 2-14. MSC/NASTRAN DISPLACEMENT VECTOR LT.SAMPLE.DATA AUGUST 3, 1984 MSC/NASTRAN 8/ 1/83 PAGE 21 MASS/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL o o o o o o o o ni ni eg o o o I Nl a o in in co o h- h- rH O' |v» O O o o o o O O O O O o O M3 o O' m O' o O' O O'’ 1 O' rH o o CM CM CM CM CM CM CM r—i CM CM CM CM H rH rH rH O rH o o O O O O O O O o O O O O O o O o O o o 4 4 4 4 4 4 4 4 4- 4- 4 4 4 4 4 4 4 4 1 4 LU Ui UJ Ui Ui UJ UJ UJ LU Ui UI UJ UJ UJ UJ UJ UJ UJ UJ in m Nl m m m O' n CM o- Nl Jv H 't CO M3 co M O' rH co O' CD o M3 m 0- CM M> o O' CM rH CO CM rH ■o m CM ni o ui «H <0 r-H O' in CM M3 CM CM CO O' fv rv iv CM CO O' rH rv O' sD o CO CM Nl CM M3 ni CO O r—1 o m O' M3 o Nl O M3 rH O' M3 CO fv m o rH H CM CM CM m fv CM in o O' rH o o Nl o O' O' m m rH rH rH rH o O CM CM CM o o O o O o o O 4- 4 4 4 4 4 1 UJ UJ UI UI UI LU UJ UJ O O' J o J O o O O o O o o o O o O o rH o CM 1 rH 1 CO O rH o CM 1 CM 1 CM 1 O O b- CM Nl N't Nl Nl Nl ni Nl Nl Nl vt Nl O' O' vt 't N! N! N1 «t m CM L> O O O © o O o O O O o O o a O o O O O o o O 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 UJ UJ UJ Ui UJ UJ UJ UJ UJ LU UJ UI UJ UJ Ul UJ UJ UJ UJ UJ LU UJ LU co o- m> rv o- O' o o- M3 O' CM CO Ul CM CO o CO N1 Ul O vt N1 > rH CM M3 o rv O' O' Ul O' N! o o o M3 b- ui o vt rH Nl rv CM CO O N- M3 in Ul O' O' N1 CO rH rH CM M3 m Nl ui rH CM in CM CM Nl ui o rH Nl rH N1 O' o o- O rH O' CM O' V ni Nl CO O' CO rv Cv M> rH Nl CM rH CM rH <0 O co m a CM o u in O M3 CO m O in rH O' o co M> Nt O rv. o o rv- CM sO CO < tv >5- rH M3 O’ M3 CM Nl -t CM rH in rH rH rH rH o >t o m rH rH >* I I t 1 I I ooooooooooo 4 4 m ii) iii hi hj m in l!| hi hi iii O'H^)vO«J»OC0'0^KlH I t N oooooooooooor^vor^moooo'or^oo O o O O o o O O o o O rH M3 N1 >t O’ O' 1 rH O' CM f rH 1 M3 1 o o o rH o rH o rH rH rH rH rH rH rH rH CM CM rH rH rH rH rH o o 2 o O o O o O O O O O O O O O O O O o O O o o O 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 M Ul Ul Ul Ui UJ Ul UJ UJ UJ in Ul Ul UJ UJ LU Ul UJ UJ UJ Ul UJ Ul V- O CM N1 co O' O' CM vO >t Ul rH n CO rv. O' Nl CM Ul O' Ul 3 rH M3 CM rv- M3 CM CM N! M vt rH st >t vt rH O' CO CM O’ CO vt O' O' —i CO U) o rH Cv CM CM O' rv CM Ul CM CO n- o M r*v rH O' Ul rv o r^ Ul CJ O' rv. O N1 iH o CO CM CO o- o- •vO rH Nl O rv O' CO CO M> Ul CO O' 't M3 M 't CO ro N! rH CM N1 rv. o O' co Nl o Ul o m rH >t CM CO O CM O' m rH rv. N1 CM rH vO rH o Nl o O' O' vO O' Nl M rv M K1 CM m ^ m <0 M3 CM CM CM rH rH CO a M o CM O’ Nl CM Nl < h (0 2 O b- M a D.O0Ot50O0OOOO0OOUtD0UO0CD00U > h- OOOrHOOOOOOOOOCMOOOCOOCMOOOOO WOOOOOOOOOOOOOOOOOOOOOOOO HNCgM«J-lfl'0NC0^OHHCMKl«J’^irilfl^NC0C'O IriHHKHHHHHrtN o a 2-148 lV-V-V-VJ FIGURE 2-15. MSC/NASTRAN LOAD VECTOR NASTRAN input. These cards apply a constant axial force between two defined grid points. The F0RCE1 cards in the sample case are used to account for nonlinear effects in oleos and unsymmetrical beams. There are no externally applied loads at node points, only at mass points. 2.3.2.7 Forces of Single-Point Constraint Figure 2-16 shows the NASTRAN output that summarizes the forces of single-point constraint. This shows the forces and moments that are applied at the model constrai t points to balance the model. For point 500, con¬ straints are specified in all six directions, so corresponding forces are out¬ put. Note that the loads for the symmetric degrees of freedom (Tl, T3, R2) are all very small, indicating that a well balanced set of applied loads is being used as input. This is the result of including inertia relief loads in the calculated net loads used as input to NASTRAN. The constraint forces in the anti-symmetric directions (T2, Rl, R3) result from the geometry of the model. A half-airplane model is used, and wing loads come into mass 5. The constraint loads shown correspond to the missing loads that the right wing would have supplied. The same is true for grid points 600 and 900. Grid points 1199, 1498 a 1 1499 are center-plane grids as explained in Section 2.3.2.5. The single-point constraint forces shown for these grid points are the reactions at the center of transverse beams in the KRASH model. 2.3.2.8 Forces in Bar Elements Figure 2-17 illustrates the NASTRAN output that summarizes the bar element static loads. The sign conventions for these loads are shown in figure 2-18, along with the corresponding KRASH85 beam element sign conven¬ tions. The KRASH85 loads that correspond to the NASTRAN bar element loads shown in figure 2-17 are as follows: AS TRAN 1 OAi! CORRESPOND INC KRAS 118 3 LOAD MIA -MZT M2 A MY I MLB MZ.I M2 B —MY. I SI FYJ S2 FZJ FX FX.1 T MX.l NASTRAN plane 1 corresponds to the KRASH85 x-y plane, plane 2 corresponds to the x-z plane. Comparison of the loads in figure 2-17 with the KRASH "STRAIN FORCES" output at time zero will show a very close agreement. Beams which lie entirely in the airplane plane of symmetry (y = 0 plane) are treated differently in NASTRAN and KRASH85. In NASTRAN, the loads are for a half-beam, while in KRASH85 they are for an entire beam. This applies to beams 1000-9000, 19000 and 23000 in figure 2-17. (The NASTRAN bar element numbers are 1000 times the corresponding KRAS1I85 beam element numbers.) Beam 24000 is missing in the NASTRAN model; this is a I)RI element which is modeled as a RBAR rigid element in NASTRAN. 2.3.2.9 Element Strain Energies Figure 2-19 shows the NASTRAN output of bar element strain energies, in inch-pound units. Missing elements (1000, 25000, 26000) are those that have less than 0.001 percent of the total strain energy. These strain energies agree with the KRASM85 output at time zero, except for oleo and unsymmetrical beam elements. The use of FORCE 1 cards in NASTRAN to model these nonlinear elements causes the strain energies calculated by NASTRAN to be incorrect. The KRAS1183 strain energies for those elements are correct. sO S0 M O O O O O O ♦ ♦♦♦♦♦ UJ LU Ui Ui UJ ^ vO O' vO O' O' M (0 o 'O w N W a H N 03 ■tf M ^ fs £0 'O M M (OMvOONW sJ* Ifl O' CU M f-< tsl 0 s vQ CM (Ni (0 Ifl O H N N in >0 H H N N H N O <6 N ^ ,-i .-t O' «J csi 4" ^OOOOOO I o o o o o ifl>t o o o o u LU LU Ui Ui ^NO'MO M O K1 O' lil u O' H CU N Kl (U N O' N H o O' O' O' CO HHCOHnOO H N vj vO N O I I I m o © o o © O 0 0 4- + + 4- f 1 4 4- L J LU L-J UJ UJ UJ LU L J UJ Ul -ij O V C' •j /—< >.i ■ 7 - NT NT X© O r j L-T u. O c 1 X NT CJ •’ J 0 •© rl - ?x O' 1/1 NT CJ f ! <0 CJ ix - C' 0 co ' J C'J ' J t T rx v -p LTj o rx 0 uT LT O m o o o o o c- o o O 3 0 1 J ■*> CSl rH O CO O - LT 0 O 0 0 0 0 o o o o o o o o O o m NT 1 •-T i NT rH 1 ST CJ CJ 1 O fx X© 0 = 0 0 0 0 o NT © «4- 0- O rH l—i O CO N* O' NT ►n 3 NT rH rx c CJ L> rH O 3 n O' O v© CO OD Ns. 0 O' in rH co rH O' O’ m N. CO CSJ O' r*H O' co 3 -0 Ox rH lO 0 rH m rH co 0 0 0 rH CsJ H nt CsJ CJ CJ CSJ CJ cO rH NT r.T x© rH m rH NT rH CSJ in x© S* 0 0 0 pH l i 1 i CJ NT o o a; < co u nJ" '3’ 2f O’ NT xj O’ •J- 'J- NT NT NT NT 0 0 0 NT NT NT 0 CSJ CJ O O O O 0 O O O O O O O O O 0 0 0 O O rH 0 rH rH 4- 4* + 4* •* -r 4' 4* 4- 4- ■r 4* 4- 4- 4 4- + H- 1 4 1 | UJ UJ UJ LU UJ UJ UJ UJ UJ Ul LJ UJ LU Ul LU LU UJ Ul Ul LU UJ LU UJ CO CJ O’ N- sr O CJ C J \4> xO o- O m CJ CJ rH xD O lx. O' CO CO CJ NT co •T 0 in N. CO O' CO -O O’ X© O' O' a- CJ NT ■3- O' S© xO 0 CO 0 N- O’ O' rH NT © O' rH NT in LT ■ J fXx N. C' sl- CO CO m N- rH m c- 0' xO CO fx- ■t co CO O •* co CO rx. fx. co s3* rx. X© © O' 0' O x© a N in s^- x© O ■& 0 - rH Q rH rH co LO Hi in 1X1 CsJ W O O o o CO CO _JOOO©OOOOOrH3in0'rHO©NTNTOrHNT©O©OOO NT CsJ O rH 4 I UJ LU si" H O' © LO rH CO © ^ 3 cn a O 0 O 0 0 0 O 0 0 © 1 CJ O' 1 © 1 st CJ 1 rH 1 © 1 © 1 0 . 5 . CJ O 0 O O rH 1 pH 1 h <3- m © © © © © © CJ © © in in in st 3* 0 O rH rH m m 0 m m z O 0 O 0 0 0 O 0 0 O O 0 0 0 O O 0 O O O 0 0 0 0 0 ♦ 4- ♦ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 4 4 4 4 4 UJ UJ Ul LU UJ Ul Ul Ul UJ Ul UJ UJ LU Ul UJ Ul UJ UJ Ul UJ UJ Ul UJ LU CSl sT O' O' •3- O CJ a) CSl sf CSJ CO O' CJ rH rH O O 3 NT NT 3 3 z CO 3* rx. rx \3- CO NT m NT 3- © h- rH © NT NT co in CJ st rx NT NT CO CJ NT 3- NT m 0 st © rH rx 3- csj csj O' NT •3 rH rH co rx rx © O' CsJ CJ 1 Z O' rH n* rx N- O NT NT m rH CSJ CJ O m m m rx rx rH rH CSJ CJ 0 < co CJ in in m O' © rH CJ NT O' O' O © CO © O' O' rH CSJ 0 rH rx fx rx -j z -J CSl co 0 O' 3- m CO O rx rH 0 CO NT CJ 3 O' O' © m m © CO O O rx rx UJ 1- fx. O' CJ © © m NT CSJ csj NT 1 NT 1 m 1 CSJ rH CO n. OsJ Csj m © O' O' 1 rH 1 O O CSJ 1 CSJ 1 z © m © © © NT NT CM csj rH O' m m m cr 0 O 0 O O O 0 0 O O 0 0 0 0 Q 4 4 4 4 4 4 4 1 1 1 1 4 4 4 < J" UJ Ul UJ UJ Ul Ul UJ UJ UJ UJ UJ Ul LU UJ 1 in rx 0 O' m O m 3 3 rH © © O' 3 co © O m NT 0 NT NT O O CJ 0 m Csj CJ z CO m NT CO O' O' 0 CJ CJ rx O' 3 NT NT O' rx co CO csj NT O' CSJ csj © rH © NT NT CO t CSJ LO 3 co © © o o rH NT 3 in O pH co rx rx o © © © © o o o o 4 4 4 ‘ UJ UJ UJ UJ CSJ 3 0 rH pH O CSJ H CO H ffl M v© I s - 3 O 3 © rx o 3 m 3 co V© sO o o minmincsjcsjrHsOsoinrH ooooooooooo 4 4 4 4 4 4 4 m m o o 4 4 UJLiJlUUJlUUJlUUJUJUJUJUJUJ UJUJ vocsjo'r^r^csjinmocsjsosrpH mm (OsfivO^'WNvt'tCOO'sOsf'fl Nl M (MrilflvOCONOOCONNvDH CSJ CM 'O-tKIMO'O-t'fO'vOrtrlO CSJ CSJ 'tONM'fCO'O'OOO'KlHCO Cx fx (MflO'O'OMNCSIHmO'vOSOONN a rx 1 rx 3 CSJ CO rx m NT CSJ 3 1 © 1 3 1 m 1 © 3 3 ’ 3 1 3* l CO rH 1 pH 1 3 1 3 O O CJ 1 CJ 1 © © m © © NT NT CJ CJ © pH m m m O O 0 0 0 O O 0 O O pH 0 0 0 4 4 4 4 4 4 4 4 4 4 1 4 4 4 LU UJ UJ UJ UJ Ul Ul UJ UJ UJ Ul UJ UJ Ul rH © NT 3 NT m O 3 3 m rx © 3 3 3 3 CO rH NT m rH 3 3 3 m m CJ CJ UJ © © 3 CO © NT 3 O O 3 © 3 NT NT 7. © 3 rx rx NT 0 fx rH rH 0 NT © NT NT < CO NT CO rx 3 rx rx NT NT CJ CJ 0 CJ CJ -1 0 0 0 0 O 0 0 0 O pH 3 3 © O 0 3 © © O m NT CJ O O O NT NT a * • • ooooooooofnmo'csj>i*cocommopHi«nN>ooomm ooooooooooooooooooooooooooo ooooooooooooooooooooooooooo Z ooooooooooooooooooooooooooo uj • rHcjNi3m©rxco30rHcjNT3in©rxc030rHCJNTm©tx«o Z o HHHHHHHHHHCSJCSJCvJNCSJNMCSI 2-152 FIGURE 2-17. MSC/NASTRAN BAR ELEMENT FORCES BAR ELEMENT FORCE S »* 5, ■ 2'* W* i ■■ rawr* r o nt u tx CO \ 0 10 > rH o o 0 N H- + UI UJ O' UJ CO r—i r—l Z M> M3 - 0 < z \ o 0 r CM CM NT NT O' O' CSJ O O i-4 O rH O O O rH o rH rH rH rH r—i O rH rH rH O o o o o O O o O O o O O o o o O O o o O o O O 1 1 4- 4- 1 4- 1 4- 4- 4* 1 4- 1 1 4- 4- 4- 4> 1 1 4- 4- UJ UI UI UI UI UJ UI UI UI UI UI UJ UJ UI UJ UJ ui UI UJ UJ CO h- CM CO h» CO M3 o rH o- CM M3 O' 10 o CM o o O CM 't M3 CO CO CM CO O' M> N. 10 o CM M3 CO CM M3 f'- O' O' rH CM CM O' LT| h- to CM CM H CO O' rH n3* rH rH N- CM O NT vt CM CO rH O' sO <0 a- st sO O NT O' CM O' O rH CO CO CO nt O rH rH o NT N» CM O' CSJ UT Lf> M3 CO o CM <0- NT r». rH LO rH rH rH rH rH r-i M3 NT St M> NT 10 rH CO O CM rH CO rH rH 10 CO N. rH NT 10 10 N- o UI rH rH O' CSI CSI to rH rH CO r—i rH 10 CM r—i CO CM f". M> CM CM rH rH O' o. r4 rH < tt ►“ 0 < o wm co z H* M> CM O O rH O NT sO 0 CM 0 St CM O h» O' M> rH 0 O O' O O' CM O L H u. M3 St 0 M> M> !'*. NT NT O 0 rH O' O' 0 s£) (H O' 0 N' CM O' 0 o T. co o NT N- h* M) 0 0 CM ui St N. 0 O' K CM O' O' r—i CM CM O' 0 rH O 0 o r + 0 O h O NT 0 O' CM M> FM CM NT O St NT rH O' O rH 0 rH o o w Z Z 0 D O 3 < 0 a 0 0 0 LU Z Z a 0 o o z z < a a < > > > O 0 a O' LU LU z z UJ LU < < h- H O O > 0 rH CM NT NT NT NT NT CSJ s* O O M o CM CM CM rH NT rH NT St 0 a o O O O O O O O O o O O O O O O o O O o O O O O O UJ 4- 4- 4- 4* 4* 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4* + •4 4- + + 4- 4- H- + Z ui UJ UJ UI UJ UJ UJ UJ 0 UI UJ 0 UJ 0 0 0 0 0 0 0 0 0 0 0 0 UI i CM 0 CM N. O n- o- N- sO O NT CM M> 0 OJ r^. O' O N* 0 O' NT 0 0 rH O O' Ps. NT O' NT O 0 CM O O O CM NT O* M> M3 rH o- r>- r>. O' M> Z sr St O' O' O' O' CSJ N* rH NT rH COOM 0 O 0 NT O' O' O O o O' M NT CM CM O' r*» o 0 CM 0 NT O' CM CO o rH 0 0 NT NT O' sO UT rH M3 CM < O' N*. O’ M3 CM o NT O NT NT 0 NT 0 vf O' NT CM O fN. O' rH 0 rH NT ce M> CM o M3 O' CM NT O' ut NT M3 O NT 0 M3 CM M3 CSJ 0 0 NT M3 O' O' 0 M) r* NT N. CM NT NT St NT CM rH M3 rH n± NT M3 CM 0 rH CSI CM NT CM rH HHHHHHHHHHNCVJNCJWN 1 w >» fc -J 3 a z 0 « o O 0 0 0 II 0 O M 0 u 3- Q. < > h H 0 0 1 0 h- 0 K z Z 0 o 0 4 Z w Z L) < h- 0 0 < 0 M -J Z3 0 a 0 0 QOOOOOOOOOOOOOOOOOOOOOOOO K MOOOOOOOOOOOOOOOOOOOOOOOO o I oooooooooooooooooooooooo I— HfSJNT<0 , U)M3F'-®G'OrHCSINT>0;UTM>r^C0pOrHCMNT^»C0 ga 0 or < CO UJ o. < o co • CM UJ N -i 0 a. 0 r < < z O • rH I- CSJ 2-154 •v' v” - »jCmjfm b»A.^k; FIGURE 2-19. MSC/NASTRAN ELEMENT STRAIN ENERGIES 2.3.2.JO Grid Point Force Balance Figure 2-20 shows the NASTRAN output that tabulates all the forces and moments acting at the grid points. The totals shown at each grid point are not always zero; the loads due to RBAR rigid bar elements are not included in the balance. Therefore, mass points which have node points connected to them, as well as the corresponding node points, will show nonzero total loads. (Grid points 200 and 201 in figure 2-20 for example.) Mass points without node points (such as 500 or 600) will show zero total loads. Due to this anomaly in the grid point force balance output, these data are onlv marginally useful. 2.3.3 K.RAS1185 Output 2.3.3.1 Initial Output The initial output of KRASH85 is identical to that of KRASHIC, described in Section 2.3.1. These data were illustrated in figures 2-8 through 2-10. The only exceptions to this are the mass and node point coordinates, as well as the initial mass and node point deflections. The values shown in the KRASHIC input represent the values before the last iteration of KRASHIC/ MSCTRAN. The values shown in the KRASH85 output are those following the last iteration. There will be slight differences in the deflections between those two outputs, unless a very large number of iterations are used (>10). Figure 2-21 shows this section of the output from KRASH85. Note that the initial deflections and corresponding coordinate positions are slightly different from those shown in figure 2-9. As an example, the initial node point z deflection for node point 11, 1 changes from -.3946611 in figure 2-9 Co -.3946607 in figure 2-21. These values represent before and after the tenth iteration. The corresponding node point z coordinates show no difference between figures 2-9 and 2-21, since thp coordinate values are shown only to .00L inch. The differences are much finer than that. Also, the initial deflections are in data set XYZ.NASOUT.DATA, which is always shown at the botton of the KCHO of input data. If all deflections I in this data set agree between the KRASHIC and KRASH85 outputs, then further iterations cannot improve the accuracy of the initial conditions balance. If the two sets of data do differ, and the user is not satisfied with the quality of the initial balance, then further iterations cent Id improve the initial balance KRASH85 includes some additional miscellaneous calculated data, in addi¬ tion to that described for KRASHIC in Section 2.3.1.3. Figure 2-22 illustrates this output, which is calculated prior to time zero in KRASh’85. These data include • Beam uncoupled, undamped frequencies • Beam damping constants 0 Euler angles, beam IJ to airplane •_ Load interaction curve load ratios (optional) The beam frequencies output are the undamped, uncoupled individual beam frequencies associated with the six degrees of freedom of each beam. The frequencies listed under the headings (1), (2), and (3) correspond with the three translational degrees of freedom (x, y, z) and those listed under the heading (4), (5), and (6) correspond to the three rotational degrees of freedom (, 6, ip). The frequencies are computed using equations 1-55(a) and l-55(b) from Volume I, Section 1.3.5.3.6. The frequency values summarized should be reviewed for indications of potential stability problems which may occur with the numerical integration routine used in the program. For example, high frequencies combined with a relatively coarse integration interval may result in numerical integration instabilities. In general, beam member frequencies should satisfy the follow¬ ing criteria: 1) Member frequencies < 500 Hz 2) The product of the maximum beam member frequency and the integration interval <0.01 2-156 INITIAL CONDITION STATIC SOLUTION r - v* .• o o o o o o o o o o o O O O © o o o o o o o o o o o oooo o o o o oooo r«. -o CO CO O' yf O O O nT Kl oi/iooino 0^00^0 o o o o o o o o o o o o o o o o NOOONi ♦ ♦ I Ul UJ UJ Ul Ul # ?■ Kl >f CO •T >}■ -f y- Ul Ul CM CM CO CO O ifl i O' J N J Kl O H O O H Ul M ^ M N 1 W CJ H o f CO Ul Ul Ul CO CM CM NMONNM O' J H O N K 1 O' CO Ul Ul CM Ul O' -J CM O lilNHO' NOON O CM U) Ul CM O' O CM •«>f «f N •O O -T CM ■J ■JOU1 u\ T -h a cm r>. , Ul K. fM O' i O CO CO iH O' O' fM vj- CM sO CO CM CM NOON' CM Ul Ul Kl o o o o o o O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o a o ) <0 •& 1 ui 03 < O O O <-• O' (A Ul CO M 3 vO CM O fM o O Cm Kl o o o o o o o o O O O o O O O o O O CM o OHOOHN ♦ + I UJ UJ Ui CO MS O M H rt Kl H- Ul Ul CM M KWI CM CM st CM CM N >f O N |J N -J HUl'ON O Ul ^ Ul o Ul M O' o- H O' fj H U) vO O N O H ■fi O Cm O' O fM O i o K1 K1 ^ O O O O ■* + + t UJ UJ UJ UJ fM fM ^ M) CO ui sD CM H o O CO H O' Ul M MHOS Ul «J- O H Ul H UJ UJ UJ UJ UJ UJ Ul O' O' O CO K 1 vT CO O' 0 U> Ul Ul fM O' o fM fM CM CM Kl yO yf Ul Ul Kl Ul Ul .T CM Kl O H J> CO » Ul CO O' CO UJ UJ UJ UJ ^ N O H Pm K\ Ul U| 10 U| O O' vj- O' O fM >J- -H CO CM ki co Ul 00(0 0 N N H ■J fM LC1 o - <0 lA H N H 4 H H K 1 N (M O H H Ul Kl MHHH O Q O odd o o o o o o o o o o o o o o o o o o o o oooo o o o o oooo yO yQ CM O O O' O' O' fH CM CM ui O O Ul rH O O O rH >J- CM CM yf Kl Kl fM r4 *■4 yf fM fM K O' O' y- OHOOHUl O cm o O CM ^ OOOO dodo oooo oooo OOO-C OOOr-4 UJ UJ UJ O O' • -O Ul y? ■ CO CO -4 K N O -o -o y U1 ui Ul UJ UJ UJ UJ UJ CM O' O' yf yf CM ui Kl O' CM Ul co O Mil Ul fM x> CO <0 Ul -0 O fM r-C O O O - I UJ UJ UJ UJ UJ UJ Ul O' Ul Kl «M Kl CM Kl CO CO N (M ^ T -J H Ul O O CM H ifl M JM) H K ^ Ul o O Kl Kl Ul Kl Ul v* O Kl CO ^ (0 Kl yf & CO Ul Kl CM O' H Ul Kl fi CM M yQ CM O M Cl H Kl CM Ul M 3 M 3 Kl rM rH M 3 CM CO CO fM H If Ul O «e -c o eg V? rM O O' O' 00 CM >H fM Ul ^ Ul CO Kl yf Ul Kl M) .O y? O rM O M3 Nf'.r-J Kl PM sj- Kl r-* Kl CM * CM -O’ M) *H Ul vO -0 CM O' fM M 3 CM CM r-C O CM CM Kl Kl Ul CM CM Ul CO CM CM rM O Q a < 00 o a o 4 CL o oo o a a 4 - 4 tO * a. cc a o a 4 4 i- 4 CD (0 * a a: a o a 4 4 >- 4 C 0 t 0 * o a a a a o i 0.4 4 4 1— U. 4 CO 00 CO * aOKKQIO O. I 4 4 4K- 4 U. (D CO CO * o. a tr o a 4 4 K- 4 (0 CO * a a a o a 4 4 K 4 CO CO * o o o © o o o o o H (SJ Kl o o o o © o CM Kl o o o o o o Kl y o o o o o o o o o O yQ -Q -Q yQ oooo oooo N K |M S oooo o o oooo o o <0 <0 (0 CO O' O' FIGURE 2-20. MSC/NASTRAN GRID POINT FORCE BALANCE HHNM'i'lfl'0S®0'OHNM4 , irXlKC00'O« noooonoaooooooaoQOooa ooaoooooooooooo-sooooo NOOO'O'^OOOO'fOOOOOO-J-COOOOO MOOOCOlOOOOK* OOOOOOf'-f'-OOOO oomk>>oooooOOUUflNOOOtOO)COMff'NlSJ(00oOO MOON>'HsOoooa>a i^jhnki-j-cooooo QO'JM/ lOOONMSWJtOHMflOoOO OO‘fl'0NM^0HOKI(M(Vli1O^'f >0QOO 000000000000000000000 OOOOOOOOOOOOOOO £00000 X\J’OC0f > --0f^'0<0<^OMOl0MC0U>OOOOO HHtONNOCrtfl'^MHHHfflQHNOOOO IflOM'O'-IMinONiflNUlNON^HHOOQ HfflHHtfCOfflfflO'N' 000000000000000000000 - KKUOMOOOMowHNs HHOOOHONlflO'IOONUl-fl-Jff'HJ’IOM M-nn4)OOOn^h DcsiaMOO'iProocsir'- * -JNff'0'OOJ'OQvJN(Dff''JHNOc0NOW Xff'ff'O'ff'OOffOQONOB'JOOHHNIM' (OO‘ff'ff'OOMO'flNHNN^Hff'NNff'5'9' HN^>O(0O'HHnH<0t0ff'HHNO'(0NNN oaoooaaaaoaaooooooooo OO0OOOOOOv0OOOOOOOOO Ol/lC0‘«Ml/lN^OftJOI/ll/lOMOOOOOO tOJKlONC5C'MQNNO(Ol/l'JOUlNtOOO uiouimho-hO'nh ioNNW-JHirMOo HaHHCgNO-tMAXTHinf CMCMCJCMCMCSJCMCSJCMCSiNCg oooooooooaoo 000000000000 OWMMNHS4>««(0(0S Off'MMN'CrtO'BM'filO MHN^^INrfvO iH^OONOOO'HSff'^) CO«OfflfflOMN^O-fiN^ HrlHHNNNNNHNH JNNNNNNNNN >000000000 joooooooao >'0>0No®sflui0'o )>fi^OHN^MOO lNMfl«NrfiJ©0' >FHrHr-iiHOOrHrHO (WMNIfl^^NNIflO (HHMlflNNMMino : NNNNNtgMKINNNN I 000000000000 1 OOOaOQOOOOOQ - OHNNOMTIOrHfJO I - O(0(0(01/1N^H^N®M lXHBO'9'lfl>tlflO'fOMH I 1/IM-OvSHMJHI/lff’Nff' : NMOtOi-tO'HHMHHS r>-' r~ 00 eo a> O' rH i-J r>-' n! a- fg 'EHHNMHHHNHNHiH 0 HHHHHHrtriHHNN 2 .-.>1 FIGURE 2-21. KRASH85 OUTPUT, INITIAL MASS/NODE POINT DEFLECTIONS (SHEET 1 OF 2) VEHICLE TRANSLATIONAL VELOCITIES IN GROUND AXES I IN/SEC) VEHICLE ROTATIONAL VELOCITIES IN VEHICLE AXES 1 RAD/SEC I EULER ANGLES OF VEHICLE RELATIVE TO GROUND I RADIANS I HHHrtHHHHHHWN OOOOOOOO — UlO-HNO-OHlfl ^ lOeOMOfflNNvO ** IflSHIOHMDN VI Q- ONco 000000000 - 0 , NNHHN-OOOO oaaoaaaaonaoc ^(SJNHlflONNCO(OHlfl< •fiN«OUIOSNU|UU04JC UI^J-ONO hO-JO-NJ- a NN^ MOlflJOMf INlNW'OO'tflMHO'jO' CO C INItOrtN^N^HHi nnhhhhwh oooooooo ■ I I I I • * • oooooooo N^^St/ltONN WOO-CKIO-J® ©KIVICON.COO'UI OOOOOOOOOOCMrHOMKICOvJ-vOOOO 0000000000-O^KI-0^t4)0< OOOMKIJrlOlflNNlfiCONlC ff'J®(vrvNcOO-Off H ® M O' ( a o o a o o < t S vO ^ ® S v O ^ vf N NU ; >o S N CO Ifl N l I M M H o H C I vj Kl Kl N -0 ?■ I OCMMSotf < OOOOOOOO* - OOOOOOOO! t fflOOMJJW-Cl l NCOIOMOMflOl I OCOOO'iUNNffli ■ ®NNNONNNl OO'O’OtOO'NMNl >«0'(00(ON9''flHMHOM>fff'0'(0® O-OHHMNf oooaooooc iJNNOIfl(0'J®‘< -JOOCOO-J-OMC OHH^-OvOWWf KInOsOO'Csj^iTIVIC l C'JO'O'KlMinceO, oo'csjcsi^-oui^foc OrHHHWHNNCjr ♦H £HHNWHHr(Nr56170 01 -1.665150 01 6.784160 05 2.252640 02 4.18585D 01 4.46840D 05 o o o rinoNci)-fl(ON>jMOoini‘j t m co m — co to ff iflMMgwO'NUiHsCO-tn^oo^'OOH^-o ^IMNNfvJJNlONinOM-JinNininUUfl-TlM ^ N (SI o o >-iNNsO>0Q)in(0^7 n c in m n a) - IfJN^HNMQO O O TO O' O' *-6 —< CO NNff' O O O -T O oooooo oooooo oooooo oooooo oooooo oooooo oooooaoooooooooooooaaooo “ c o cnj o- uiaDONHSXNinjO'j -o ® f j j n o « ifl vj-cocoKicMinco-o^-csjcr #mnco •eoi/liror''^NiOKi - H M m O N 9 .f fj N l«J N K 1 S M t> o w M o Xinaino-WUOM^N^MM-C J)NUllfl«MNNHHOO ff'MNN»nNtfK|NN»ir»• o m in 60 T* -« O O' CO «SJ n K ^ (M N Kl O O I s *. TO aoooaooooac ■ C taJ-OinMtrtNNNf isinm-flo m o m m o • ■COOOf^COOKI^tflC NNff'fl'rt(sN^O>C< lOOOOOOOOOOOO .CMC p-H CO O' O CO O' O' H W ^ O'COHONNCOOCOO'Om INMJQNN’J'filONOOOl OOOOOO OOOOOO cg^)inj9'W(0'O O' -T -o s >-• <-• 0 in h u co c o 0 N O O C -0 M o o ^ ^ ^ O O -n M M HOONCr-«r-lOOOOOOOOO ilflNHlftlrtNO(0<0c0MlflMOOH ^(DOl'Uftf'f'lOHO'NNO'OlflONOOvtNlflHinO • fjN^lTMNCOoOOMriHJO'O'i'OO'CCOlflfOO ^HOK»tfl(DNOSN'OU|C'CON(OOON—4 3 tv o ■J CJ O' 0 eg -X) O X> a O' rv CO 0 Ul it 3 rg r—4 o to in o O' tv ro 3 o eg r-i X) X) o to eg © © a X) o in •0 tv © er» to Ul CO (-4 3 O' © it Ul rv rv r-4 0 to eg to •o in to •t rv © rg to eg Ul eg eg <-* ro eg h it eg ' H rg H H O' * * eg eg to CO O' eg eg © ro to o rv O' tv eg to o- Ul X> X) © it o- in o in to rv Ul r-i 3 eg to rv O' it rv o © © © X> vT to rO o eg o •-» »*< »-< •O to o o ro M eg it o t in X> it to vt X) fv O' -* O' r-i •H eg eg eg >t o O eg eg © >t in •t to to 3 it 3 it ro to to eg eg Cg cg o O o © O o © o o O o O o © O o O o © o o o O O CD O O Q Q © o rv a O' cr> © o © vD <0 O' vt rv © © tv CJ Ul o O' eg O' x> rv © rv O C o in eg x> in in X> © rv O' 3 © © to © X) O' Ul to to eg eg eg a © X> CM tv CO a 3 x> a- O' eg © © © Ul it Ul U| Ul ro rO © O' eg rg o O eg CJ © 3 m t to to it ro to ro eg eg r0 ro o O o o O o © o o o o o o o o o Q © o o o o O O o a O o © © o o Q © o a o O a © a a Q a © © a in O tv r-v Cl Ul >0 XD r—i X) it c m to -0 CJ <0 eg O' «t O' O' 3 o to eg rv © ro © M eg 3 •t -O it cg C0 ^ x> o to to a to O' to O' to c0 o <1- 3 x> o © rv CJ r-i r-i o it CO in o •o ■-< X) m © it it © © Ul o x> © it © O eg eg a to M in ■ J a eg to <0 tH eg Cg to it Ul Ul ro .-g eg eg eg rg o o © © 3 3 it it it to to it it it to ro 3 it it it o © o o O O O o o o a © o o o o o o o o o O o O o © c a a © a © © a o © a © o a © © © © Q O C) CD m in Ul 0 o to o it o to Ul tO j c to eg © eg eg O' o eg 3 to © © © in m r- O' 3 to eg o to Ul r—i O' Ul O O it it O U' © £> a> eg o o m O <0 o © CO eg Ul Ul H © o •—4 Ul 1 fJ eg fJ eg fj eg eg rg eg eg ro ro eg ro 3 3 CO to ro ro ro o O o O o o o o o - © o o rg - « © © o o o O O o o 0 0 2 o o o O o o o o o o - o o o rH - eg ro - © o o o o o eg © eg ej fO in n fx. cr, a r. eg to it m X) © © O' eg t o o rg X) 0 0 9 —< • •* f r-i •-* rH eg r-i © o tv. o- in eg to eg 3 eg i0 O' eg eg eg © © © © t -1 rg r—i M r-i rg H 'S H cj in 0 tv O' o t j to it © 3 rv CO O' o r-i eg to ■t © x> rv. © i-i tH <-* r~* '■g r—i r—i eg eg eg looQaoooooaooQoooooa 0'0'0'0'0'0''Jl/l«J0 , lfl0'K9'0'0'(0o'O i©©©©©©egegrveg«trvrv(oco©i , V't© IHHilHHHHOOHrlrlKlHHHHOt/lOO iMMMMMMHNNNfJHlflrtMMHHHOO ►iMaooaacsaoooaaoooaooooo < _ K 1 eg N xf ^OtOMflOMJNN^lilrOMONj O'>'0Ot0MMiiiC'0'Ni/\r'JlK'^ i N N rrt ifl CT O~>*0i0©©r0©rva'.tt''tr0rgit-tegcgcgrv.^i0 luOOlfl(0Lfll<)OOO'OOHlllHM>1NNNMO( Hhrt^HN«uiHNHHr(HHH<(>a'NWNN «0( eozooooooooo*-iooo--<«-i^«oooooooo {/)JCOOOOO0OOOO»-«OOO*HMfJ»0i-iO0OOO UJ z HrtHHHHHHHHHHrl CJ eg 4 M«-4cgroit© i «rv©O'©rgegrOiteg > trgrgegia0'fgcgcg QC HHHHHrlHH i-« UJ D t-i HHHH^HHHHrlNNNNN Mr-1 O O O O O O I 1 a o o a N K O O m in 0 0 0 r-, M U\ U) U) tl) sO PS <0 N N CJ N < a o < o UJ > a D U u < O' a < o w _ Q (/) < a O < -J O z z ujOQ M Z £ h IU < U Ui < “) CO cn o z < < ui: CO *2 3 ; u O'J’MMMOIOO'OMMMMMM ooooooooooooooo • III I I I I I I I I aaooaaoooaoooaa M^OW'tONOCOHIfl^HCO^ OOMOOOOOlflMOO'CO'OCO ooi/unootfONooff'C'O'O' ONMWOOO'OtOO^^^^CO MHsOHl/lHHH'j’lflNNNNH ^MMrHiHlflM'OOiHMMM OOOOOOOOOOOOO 6 a M D 9 )- Z KUUI O Z a. m m o * I I I I I I I I QQoaaaaaooooo NMOlfl'OO'CO^OO'lfl.flC' ocoo'ff'a'mo'inocoff'OH Nff'tf^C'NO'OOO'O'OO COO'NNO'^O'NOO'tflftlfl o o I I a a oi >± K> i o o U) *H NO'MCO^CylO'NHtf NMNN(0 I/) M M M M M M 2-162 A . V. FIGURE 2-22. KRASH85 OUTPUT, ADDITIONAL MISCELLANEOUS CALCULATED DATA (SHEET 3 OF 3) While these criteria are suggested as guidelines, their exceedance does not necessarily mean that instability problems will automatically occur. Beam structural damping coefficients are computed within the program for each of the six beam degrees of freedom. The damping coefficients are computed from equations (1-54), Section 1.3.5.3.6, Volume I. These damping coefficients are printed only to provide a record of the actual data used in the calculations. The interpretation of the proper damp¬ ing values should be based upon inspection of the damping ratios (actual damping/critical damping) summarized in the section entitled "INTERNAL BEAM DATA" (Section (2.3.3.2.2)). For typical aircraft constructions, dumping ratios in the range of .01 to .10 are appropriate. Higher values should lie used only to represent mechanical damping devices, such as hydraulic, or friction dampers in landing gears or viscoelastic engine mounts. Values greater than .05 are probably only justified as representative of the fric¬ tion damping associated with relative motions of riveted and bolted structure under conditions of severe loading and deformation. The Euler angles define the initial orientation of the beam axes relative to the airplane, according to the convention shown in figure 2-5. These angles should be interpreted in the following manner. Assume the beam axes arc oriented such that x is forward, y to the right and z down. Then rotate PS 11 JO radians about the z axis, positive nose right, forming a new set of x' and y’ axes. Then rotate THEIJO radians about the new y' axis, positive nose up. This final position defines the orientation of the beam axes with respect to the airplane. For vertical beams, which are denoted by VBM=1 in the beam data formatted output, the above procedure is followed with one exception. The initial orientation is such that the x axis is pasitive up, v axis positive right and z axis positive forward. It should be noted that during the time history analysis, these angles vary with time and are part of the print output. Any question regarding the current beam orientations should be resolved by examining the current values of the beam orientation Euler angles. These are interpreted the same as the preceding discussion, except that the initial starting orientation is the ground axes rather than the airplane axes. Since the initial attitude of the vehicle may not be parallel to the ground axes (generally it is not), the time zero value of the beam orientation Ruler angles mav differ from the angles listed in the MODEL PARAMETERS section of the output. The latter is provided as a definition of beam axes orientations that is independent of vehicle initial conditions (and hence represents a true model parameter), whereas the time varying values represent the actual beam orientation during the analysis. The load interaction curve load ratios tabulate what proportion of the 1 and .1 end beam loads are used to calculate the intermediate loads at the location specified for each load interaction curve. 2.3.3.2 Time History Output This section of the output prints the time varying response quantities at each print time interval, including time zero. This output consists of the following groups of data: • Title cards • Analysis time • Mass and node point displacements, velocities and accelerations in six directions for all NM lumped masses and NNP node points, in mass axes and ground axes • Mass impulses (G-sec) based on filtered accelerations • internal beam strain forces, total forces (strain + damping) in both beam and mass axes and displacements in six directions for all NB internal beams • External spring compressions, ground deflections, axial loads, and ground contact loads (3 directions) in ground axes and mass axes for all NSI’ external springs • l)RT number for all DR1 beam elements • Overall vehicle c.g. translational velocity (3 directions) • Volume change data, including current volume, current volume/initial volume, and the changes in length of the three lengths of the volume (optional) 2-164 • Energy distribution by type • Energy distribution by mass (kinetic and potential), beam (strain, damping) and spring (crushing, friction) • Mass energy deviation • Stress output for internal beam elements, including ratios of current stress/failure stress for two failure theories • At t=0 only, the differences between actual initial mass accelerations and the theoretically exact values, for all NM masses. • Mass location plot (time=0 and at specified intervals) Figure 2-23 illustrates a portion of this output for the sample case, for one typical cut in time. It should be noted that all this output is in inch, pound, second and radian units except XACCEL, YACCEL and ZACCEL. These are in g's. A more detailed description of the specific items printed out at each time follows. 2.3.3.2.1 Mass and Node Point Data . - X, Y and Z are the ground coordinates of mass I or node point I, M. The data for each node point are printed below the data for the mass to which they are attached. XDOT, YDOT and ZDOT are the ground axes components of the translational velocity of mass I or node point I, M. U, V and W are the corresponding components in mass fixed axes. UDOT, VDOT and WOOT (not printed for the node points) are the time derivatives of U, V and W. Note that these are not the translational acceleration compo¬ nents, but are used in Euler's equations of motion. XACCEL, YACCEL and ZACCEL are the body-fixed-axes components of the translational accelerations of mass I or node point 1 , M, in g units. XACF1L, YACFIL and ZACi' T L are the same accelerations after passing through a first order filter with an input cutoff frequency. All the above quantities are positive forward, right and down. I’l( I , THETA and PS f arc the Euler angles defining the orientations of mass I with respect to the ground. These are positive right-wing-down, nose- up and nose-right, respectively. PHIDOT, THETADOT and PS I DOT are the time derivatives of the same angles. P, Q and R are the body axes components of 2-165 TIME = 0.050000 NUF®ER OF INTEGRATION INTERVALS = 200 HQ O U- cn ►-* tr a o a. to cl < O -J < O >- M K < O LA- WhOQU x uj a . N1 H H flD O' CM -< ifl ^ O Q a a a Ifl H H M ^ O' -0 r-l 0 - 0-0 0 O O O CO Ul H H o o MO O La. x m a o o ax a < O O o N a 2 a u N z 3 o a o o a (SI CSJ -O LA CM r-4 O' lA sT-VO' no O' (SI J O H •OHIilO Kl -O (0 M K1 O O N a a a o o LO W O Hi H >0 H) CO (SI CM O CO O' I/I H O >f ^ (S» nO CM NO NO O O O Q Q O O' 4 (O cJ-CsIfs.^^ O O' vO O (O LA sr C0 la H Ifl H (0 ■C o a a a •o co >-i 0 LA NO NU1HN a a o a o N O M H N H M I/) H lf| fSvDCO-O-O- >» o co oo o CM M> K1 rH CO O O O V Q > Q O > > < O O u X a D a u * 3 5 o a o a o M N H O' M NO CM CO O' CO NH H O- J O CM CM CM © — <-* © O o o a o o CO CO M O' O LA LA H H l/l N o a o a a HOOl/lN O H >J rt H O O' NO O' o O O N O H) vO -O -c O O' O O LA O vj O NO CM N NO CO H H -O nO o o o o o fM no NO -f O' LA •-« LA H i*J S (0 O M N H 4 O o O O CO OOOON o o o o k o o o o in O O O O rH O O O O K OOOOJ- O O O O rH C3 O O Q Q ^ o m co co M W N W f0 0 0 0-0 o o o o a> cv (m to M (fl M Wl o o o o O O Q O O' M N1 O' 0 - co co m O' vfi >C H ( CO O O «H hi O’ O' CM >0 in in t O CO to N O CM m m O' C3 N lO K1 N O N O ^ N M I o o o o o O O O O rH O O O O rH O O O O rH o o o o O O O O rH O O o O CO o o o o hi Q O Q C3 a fM CM vj- O' rH N O' N ^ ■J rt N N ffl n» o H r o o u M o I a u rsi X 4 a a a a a o- >j- o in m m O' n o O' h MO ^ H co co cm in m a a a a a rH H v© rH N rH O tO M co in o o' m o o' o k m ki co co hj in o a a o a N M O O' rl hi O rH O' O' 0- ^ 0- k m O hi M) CM K >0 CM rH rH M) O O O O O O' m rH vj- CO M N to K 1 O O' rH rH CM O 'O 'D co co in C-lONlOO O Q O O O M M H O N rH O' O W K CO vj M M o O J M -J O' r; ir_ vrj w- hi .o m cm in co in o o o o a CO CO O' O' co m o c CO O' m ki o o o o CM M3 CM hi O' >0 K N. K >D O' O' cm o cm m o m in m o o o o k rH J Kl O m O' k O' M3 O' O' hi >0 co K1 O O P- CM O' I CM hi O' hi rH CM hi rH I/! « hi 0" Q O > >4 o o o o o o o o o a o o o o o o o o o o o o o o o O O o o o o o o o o a o a o o o o a o o o C0 CM K O in o co mo¬ rn o m o m co n o >o cm rH O M3 M in o q o a O CM CM O' in rH O' o MOCO'J tO O O' o rH K O O a a a a O' O' in rH in cm m >0 K hi M) co rH M3 CM O' hi r-* o w a a a a o- o- in rH Ul CM hi M3 K hi M) to rH M3 CM O' hi N o in a o K M3 r*» co k o- I rH O' rH rH P rH rH CM hi ( rH CM M O Q O O Q o (0 h Ml CM O' CM O' CM rH a a a o o in k o- h >o H H M S co CM O’ O' in M3 o CM rH o O O rH rH O O' o o q o a O CO K rH in CM M3 m M3 O' O CM rH m CO rH CM H «f H -fl a Q Q o o O O O' I-H O' k m mi hi k w o n O' m CM rH O' vO rH N- rH O O' O' a o o o o Ul O' M) CO hi hi hi in CM CM o o o co o O' hi hi CM CM O' rH rH CM o o a a □ O' O' >0 O' O- hi >0 CM CM O' CM r o a o a P" © O' hi hi in M3 CM hi M3 M) rH hi CM CM rH i—t i-i <0 o o o a K O O' hi hi in M) cm hi s0 M3 rH hi CM CM rH a o m o h> O' o hi CO hi O' rH cm hi m ro o FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 3 OF 11) TIME = 0.050000 NUMBER OF INTEGRATION INTERVALS = 200 l-H o O u. H w a o u a. to a < «t a »- w ►- < O u. uj u o a u H O O u. i i-4 a o o a. x a < O O U N O 2 Q O N Z < O O U > o > a u > > < o o a X a D O u X D < a a a a a o w ui eo h m ifl h ^ ff s N M <0 o o o o o if Ifl o cm un H M C 1 Mfl K o S N ^ M (T O' J) O H Lfl 4> N CO a o a a a O' O CSJ 'O S O' iO to o U1 Ifl O M M O O O O O H J S J rt in Q f -O if pH Nl O O pH if .f m eg %o sj- o- cd N H H O O o o o o o I I I o o o o o O (0 M H J rO O' CO J O c 0 m eo eg in o o O' o m tn commo-o- eg if to eg O' m m m m O' a a a a a HlTNff J o ki n"> eg <0 «-* r ■* o ,f to co © o o o o Q J) m n a -o pH co if eg cO a a a o o >o n- o o rs. eg so eo »n fn eo O' eg >o M l/> H J H J W S M O' o a □ a o vf -* -f f eo ki in m o o O- co co eg in eg o r to Mn pH M -O M in if h h a o a o a m co .}• so co O' co cj in O' m i0 Ki h h eg co 10 ,© ph iO in « f 4 DQQDD NNf ON N- CO N f O' fO CO M O' O vf eg co in co to CO n n gi o a o o a «f eg co to -o to to eg eg if m '0 o h co N iO O N (0 N co O' eg to eg eg eg eg pH O O O o o o a o o o ■f <0 f if O' n m o eo n- in .o o o *x> rH eg f o (0 o o a a •* eo f N 41 H eg m if in fg pH 0 in if to o to y.' n n .v , FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 4 OF 11) FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 6 OF 11) Sol3D O'* 0.0 -S.7t>JID 04 0.0 -J.70...D Oo ooooqqooo q oq i/I i h « X> coo y cm cj nui w o a co n tj w o t y y (0 m O' -o .» t- cr c ^ in 1/1 OOOOOOCOhlM—«ifit0CjyyOOOOOOOOOO aoooc;of''>cj-f ^ o^fjNHtnnHH in c- m i/i OOOOOOiHjrc 0 >HtAM« 0 OOO noooooooo lOHomooooinm kOOOOO n □ O O OO - ? c* tA ul o c- o o in >© -o ■ O cr o- 0 r-< in -o in cO oo i m n m in c hi y y y -oo IN^NNNOIANHIAOOOIO o tc m m O M CJ m lOff-JCOfflOOMN QoooooQoaoooaooQoa o a ooi'KiinfflinHo joookwiomio ~d o U1 f J 0 CJ 0 HONNflHHfH(J.S4N O O ntJAUllON4l0lA/IMN1««NO CnI 4/1 0-0 IflUlOOOHNHO'^MKlNlflOMOHOOlOlfl oooooooao oo HinO'Nlf-lHNNS ^ N Nrt/ia NriHMKl hi ® ONOOHJ>M.1KI -or^ OOOOOOOma-DOOCMCMOCMOOOOOOOO IOOOOOQOOOQOOOO OO ii/iroooN(OjJ(0(0 C" r-i lllWHHMffin^ONN'OMlfl pH CM lrtNNON*ilflHH^tfJMHOO^OOOO ooooooooo o -©h1hl®OOrH»HrH -0 ^inN-ir^mmui in c-. c n /o c a w m m o OOOOOOOyycjyhlOOO-OOOOOOOOO ooooo-Ho-Hcj-jinocjcJOinoooooooo ooocoooaaooooaoooooo o JO'.J O fMH« OhJCCMOh^ONH -0 h- ® M O >-l fJ —« CJ 0 OHffNOO^HU'CS in ® , 'i , 'inMOiO'-'c-unnHfjO'WNSNON -< n rj to (j y o o m hi y f'-.-Myyinc^hiyr'-.Hoooy oooooorMooOrHrHrMooooooooocjco OOOOOOOrHOOOrMrMCMhlrHoOOOOOCJOCM y a> oN®a innMM ju^HHN/ia'fjfjMinininin -o -o m o -o y y y o o o o o o o o O o o o o o o o a a o o a N o CO o y -< 0 CO t rH hi o h> hi a n o •r y CO 0 0 O o 0 0 o O ^ 11 H l/l o o y y o o O hi o o o o O' y o o o o o o o o o fh. CM rH J- hi III 1 CM iH o o o y i o o o o y y N o o ai -o hi y m in ■o in m O O O o o O o o o o o o o o o o o o a a a Q a o a N as ® fh- i/1 CO -J 0 o y y ■-< C0 O CO -D CJ o O' O' -o hi sT hi hi <—1 M O' CO —i n in in O' N. o y O o CO o m m in N h CM H r>. O' O' y hi y m a -o m in o CO h ^ ^ o m y -o r-N N. hi o m m CM CM o o O' y r-- m hi r>. i hi cm r-. r-» CM H ff rl ij CJ 1 t I y m ui •H o O' 1 hi m y o o CM CM y y M5 -0 c. rv. h. -o in h -O -O -O l/| m in •£> M> m -o -0 m hi m m o o o o o O o o o o o o o o o o o o o o o n o a o a O O O o o o o o o o a o o o o o o a a o o V o O r-i ni o CJ m -o rH hi hi o y cm y in m in IM o cj O' n. O' y K1 O in o m in ■o y y cm m o hi a O' h* O' y o N1 CO rH ® in M> 1-4 O CJ H N O' O' m CJ CJ y ih r» ui hi O o o O' y O CM y 1 hi -0 hi CJ m HUlHrjy O' 1 CM in in n. -i i hi m y o o CM CM r-- -o -o -r in y hi o o o o o o o o o o o o o o o o o o o o a a MX hi O 0 H CM CO CJ o hi o m h j) hi hi m o y sO o o o o o o o o o o m o in i/i o y y O hi I- 4 o o o o o o o o o o o o o o o o hi hi H H CM 1 1 1 m CM CJ CM O r-4 o o o o o o o CJ y hi in in in 4* y in y m y hi hi hi CJ o o o o o o o o o o o o o o o O o o O O o o o o o o o o Q N hi O CM r-'. Mno n- m O h N CM -O MJ o- O' C' O' U- C' CO -o -o -O f-M -O ® O' o O' O' O' ® C-. CM -< o i/l s0 hi co co y O' CJ CJ hi cb O' CM in m o hi CM hONrlhl r-i m y y O' hi r-i o CM o o o o ® cm m m i ^ * r-i hi V ^ H V H h. 1 m in m O' m i i y i o in y o o o o in hi y y y CM CM hi o o o o o O o o o o o o o o a o o in O' CM O N r- r- m O' O' CJ h hi /i y O' CM 0 0 o o o o o o o o y y y cj CM Ih. co co O r- o o o o o o o o 0 0 o o o o o o o H /) H CM y 1 1 1 I hi r-. H o m o o o o o o o o K1 y -f in in in in y y ki hi hi y hi m CM M y o o o o o o o o o o o o o o o o o o o o o o o o o o o o a o o o o o a a o o o n o o o a hi hi y CO -0 CO •o CM hi y m ■o r>. CO y o —i cj hi y in -O N. CO a CM o o -o >0 o O HHHHH rH —< rH CM I'M M rH CM hi y m -o r- <0 y in h cj hi y CJ y CM -O O' CJ CM CJ in m m m rH r-l rH r-1 r-i —i "H rH rH r-i rH rH A'.'- --- FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET LOADS ARE THOSE ACTING ON THE HASS, IN MASS AXES, ♦FWD.RT.DN FOR EACH BEAM, FIRST LINE IS MASS I, SECOND LINE IS MASS J FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 8 OF 11) 1510 04 -1.4974D 04 -4.8560D 03 1.9138D 06 -6.19J9D 05 1.71820 06 o o o o o o o o o o o o o o o o O Q CO O' O' fO rv eO o o o a K> CM -H N1 CM O O o d o o o o a a CM CO XI o O C" O' a O' o o o o o o o o o o o o o o o o o o o O' a • Z CM UJ O o COZQOOOOOOC)OOOOOOOOrMr •-* O O O r-l r-1 o I oaaaaaonQ < HOKHOMMO o I in cm co -omcM-ox) m m o' lO f n N O HI -J ff- O' -0 10(0 OOOOOOOOOO'CMCMO- O N1 H S S O O- I tOQOOOOOOOOQOOOOOaaOQQO ■tOl'I-OI/ll/IJ'fflON-OWl/l^-ONCOOOI/l^O-O ;lOO'OCO-ON(OOM»^j-rtft/-ONa3<9>OrtHN IWNOWCONHlO-ONNtOCO-feO'O'f-JCOO'^j) •OWHSMOM-DOCOHO-JMCOa-HHt/lCO-J^ ooo O' in m 1—1 CO -C so m o 't o m WN-fHMrtHtfCMHNNIOMMNN0K O' OQOOOOOOOCMO.-iCO^'tOO'O'Oi-I^OOOCM oaaooooaor Itf lflWNW-« JOrtrtOOOM ^NKIHNHNNHrtHHHHNOOOOOONNO OQOOOOOOOOOOOOOOOOOOOOOOO QQOOOOOOOOOOOOOOOOOQOOOOO OIC||flO-NMH(MNlfllflO'Xlfl-fOI/linCOHCM{OCO®U3 NO-oinoKKONN-e-rwo'rtNOHNNS^tOHM-jH SKIvtr'O-WtOMtM-O-CO'O'HSi'' - - * • - • * - mcMo-r - • — — — -O-t OHCON-CMlflNN SHNS-ONNJMHI/I O'OHHONff'UllflMffl WNlflN^CONCONH-JOtt'ON-fNNHNa'MMflH OQOOOOOOO IflUlNo-JHOMN •Hoo'incor^ooo N-tHIMrt-OHinifl o a in cm o m ^ m co so ooooooooocMin-o-nO'Ominmocgininooo' OQoooooooMvtino''j-r-ir-isr^ocMrMinoor^ i > o o o OQOOOQOOOOQOOOOOOOOQOO Hi -0 H OUlMO'XKlKIKMOJfO C HI H H N O' CM CM x-flNtofflNHrto-jNffl^fMHco-jx-oeo^-co H^S^HI^OMOOCONO'OO'HOOUINn® O-fX-CNN-OlflON^tfO-CMO-t-fNNIflUl OOO N O M r- cm ^ co CM CO m n- st H -O rl H I tflfllMHNHrtlfllfll SSHHri^KHN ZOOOOOOOOO>HOoO>-4fHiHOOOOOOOOO ZOOoOOOOOOO«^OOOfHrHCMK\MOOoOOO IC-IKI-tlfliNlOf'lflHNl liHCMXJ-NPjNifl FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 9 OF 11) kinetic poiential strain damping crushing friction MASS ENERGY PCT ENERGY* PCT IJ I J M N ENERGY PCT ENERGY PCT I K M ENERGY PCT ENERGY ooooooooooooooooooo OOOOOOOOOOOOOOOOON-M 00000000000000000*3-^ OOOOOOOOOOOOOOOOOr-«*3- OOOOOOOOOOOOOOOOOOO do000000000000000£0- OOOOOOOOOOOOOOOOOCvlrH OOOOOOOOOOOOOOOOOCOCO OOOOOOOOOOOOOOOOOOO ooooooooor-OOOO©O»H OOOOOOOOOOOOOOOOOOOOOOO oooooooooooooooopoopoop M Li o- SOfflO(0^<0C0N.JMor'l9'0'‘fl^WON SooMHN«SfjfjMMr-N^<0»0ON0;oift(0 O-ff-MniAHKIOOff OCOf'JONN'JCOHCOONHl I^COHCOON- OOOOOOOOO^OOOM^i^OOOOOOOOOtsJOO OOOOOOOOOOi-hOOO*-*«-»C'J*">»-«OOOOOOC'JOCyJ HHrlHHrtrtHHHHrtH CNi fsj r-* rHCJrOsrm«0N.C00'kflrHCgK1stl/*lflin HHHHHrlHH iH H H rl H HMrfl>3in'ON(O^OHNK1<3lfl>ON»rH UlHMi-MflNWr((0lfl<0N^C0OWMff-O>r FO r*1 O N ^OHFrtNvCJ-Hff'vjO'NHOCO'/lO fJHW-tNHHHO-NNMHi-HJIITHlflNHO SJfflNONf'JO-MHM^COf'O-Caj-COHl/lO O *3- ® ^ H3-' HNOMflNaJONT-MNUlMlflrtMOWrt ( -4»-«f“4OOOOrHi-*r-1©O«-lP**-«O*-«C0 , HO OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOoOOOOOOOO OOOOOOOOOOOOOOOOOOOOO FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 11 OF 11) the angular velocity of mass I, using the same sign convention as for the Euler angles. PDOT, QDOT and RDOT are the body axes components of the angular accelerations of mass I. None of these orientation quantities is output for the node points, since these are the same as for the mass to which a given node point is attached. XIM^ULSE, YIMPULSE, ZIMPULSE are the accumulated area under the filtered acceleration response curve (G-SEC). Normally the user should plot these data to evaluate its meaning. 2.3.3.2.2 Internal Beam Data . - The STRAIN FORCES and TOTAL FORCES (STRAIN + DAMPING) are both output in the same format. FX, FY and FZ are the forces in beam axes acting upon the beam at the j end of the beam. Equal and opposite forces act upon the beam at the i end. MX is the torsion acting at the j end; again an equal and opposite torsion acts at the i end. MYI and MYJ are the bending moments at each end of the beam, acting about the beam y axis. MZI and MZJ are the moments acting about the beam z axis. In general, the moments acting at the i and j ends of the beam are not equal. The i and j ends of the beam are at masses i and j, unless the beam connects to a node point. In this case the i end of the beam is actually located at node point I, M, and the j end at node point J, N. M or N equal to zero means there is no node point; direct mass connection is used. The sign convention for these loads is shown in figure 2-18. The total beam forces can also be output in a format which shows, for each beam, the loads acting at the I and J masses. This output is titled COMPONENTS OF TOTAL BEAM FORCES ACTING ON MASSES I AND J. For each beam the first line of output shows the forces on mass I, the second line shows ma. . J. These loads are positive forward, right and down, in mass axes, with moments using right-hand-rule about those axes. The loads are those acting on the masses, not the loads acting on the beams. The beam X, Y and Z deflection data are presented in relative form, i.e., the values represent deflections at the j end minus those at the i end. The beam rotation data are given in both (J-I) and (J+I) terms. This is done 2-177 because the strain forces arc- calculated using both sum and difference terms. Note that these angles are all in degrees, rather t ban radians. If the actual rotations at the j and i beam ends are desired, they can be calculated from the output data as THETA(J) THETA (.1+1) + THETA (J-I) 2 THE!" (i) THETA(d+i) - THETA(d-I) 2 Similar equations apply to PS1. The beam lateral deflections Y and Z which are printed out are not simply the (.1-1) values. The and i rotations of mass I cause Z and Y deflections at end .1, which in themselves cause no beam loads. These deflec¬ tion components are removed from the output deflections. The output deflec¬ tions are the following Y output (Yj - Yi) Z output (Zj - Zi) + 1*0i The Euler angles defining the current orientation of the beam axes are also output in degrees. The column of integers titled VBM define which beams, if any, are treated as vertical beams. For vertical beams, VBM=1; for normal beams, VBM=0. For normal beams, the following procedure is used to determine the current beam axes orientation. • Start with the ground fixed axis system, with X positive forward, Y positive right and Z positive downward. • Rotate PS1 degrees about the Z axis, using right-hand-rule for positive rotations. • Rotate THETA degrees about the new rotated Y axis, using right-hand- rule for positive rotations. 2-178 the init ia1 For vertical beams (VBM=1), the same procedure is used, i orientation of the X, Y, Z axis is different. in this case, the initial orientation is X positive up, Y positive right and Z positive forward. For either axis orientation system, there is actually a final rotation of PHI about the X axis. PHI is not shown primarily due to output format line width limitations. However, PHI is normally rather small and will not affect the user's interpretation of the orientation of the beam axes. 2.3.3.2.3 External Spring Data . - For each external spring, the spring com¬ pression in inches and compression load in pounds is output. These are along the spring axis, which is oriented parallel to one of the mass axes. The ground deflection is also shown; this deflection will be zero if the ground flexibility is input as zero. The ground contact point loads are given in two coordinate systems, ground axes and mass axes. If the spring in question is on a slope, then slope axes are used instead of ground axes. The output titles for these quantities are self-explanatory. 2.3.3.2.4 DRI and e.g. Velocity Data . - For each beam element which has been defined as a Dynamic Response Index (DRI) type element, the .J mass and DRI number are shown. Volume I, Section 1.3.12 explains the theory and usage of DRI elements. The overall vehicle c.g. velocities, in ground axes, are always output. These velocities are calculated such that the total vehicle weight, with these velocity components, would yield the same linear momentum as that existing in the total system of NM masses. Section 1.3.9 of Volume 1 explains how these values are derived. This output, particularly the time- history plot of same, is a very useful indicator of the overall vertical motion of the system. Since the system kinetic energy is a scalar quantity, there is no way to separate the kinetic energy due to horizontal motion from that due to vertical motion. Therefore, for analyses in which the horizontal velocity is much larger than the vertical, system kinetic energy is not very useful in determining when the vertical impact velocity has been absorbed. The vertical component of the overal c.g. velocity can be used for this purpose. 2.3.3.2.5 Energy Distribution Data. - The first output in this section of data shows the current total system energy, kinetic energy, potential energy, strain energy, damping energy, crushing energy and friction energy. The next section of output shows the contributions of the individual masses, internal beams and external springs to these system totals. The system kinetic energy should reduce to zero at the conclusion of the analytical run. From a prac¬ tical standpoint, however, one can expect individual elements to oscillate slightly after the vehicle comes to rest, leaving some residual kinetic energy in the system long after the responses of interest have occurred. In general, it is anticipated that if the analysis shows a 75 percent reduction in kinetic energy, the most significant events will have been adequately described. If the vehicle is impacting on a flat surface (no slope) and a substan¬ tial portion of the initial kinetic energy is due to forward velocity (parallel to the ground), then a much larger percentage of the initial kinetic energy may remain after the significant damage phase of the crash. The remaining energy is accounted for by the vehicle sliding along the ground with a substantial forward velocity. In this case, the vehicle eg translational velocities, printed earlier, provide a better indication of whether the major response phase has been adequately covered. In general, the ZDOT or vertical vehicle translational velocity should be reduced to zero, indicating that the vehicle has ceased its downward motion. This situation can also be seen when the system potential energy reaches a minimum. The potential energies include the effects of user-defined input time histories of either loads or accelerations, applied to specified masses. That is the significance of the (+) at the end of the POTENTIAL ENERGY head¬ ings. Earlier versions of KRASH did not include the effects on the energy balance of the loads or acceleration input. These versions do not have the (+) in the potential energy heading. The individual internal beam strain energies provide the user with valuable insight into the temporal and spatial flow of energy in the vehicle. 2-180 Generally speaking, the strain energy concentrates initially near the point of impact, and as the strain energy grows it also becomes diffused throughout the vehicle. After the peak responses in the system occur, the overall system strain energy will decrease from its peak value as the internal beam elements unload. Certain individual nonlinear beam elements may indicate negative strain energy. This circumstance may occur when large deflection loading and unload¬ ing occurs in the coupled bending degrees of freedom (z-0 or y-y), with non¬ linear KR curves applied to these directions. This phenomenon is discussed in Section 1.3.16 of Volume I, and is due to the approximate nature of the nonlinear element analytical model. In practice, these negative strain energies are of such small magnitude relative to the overall system strain energy (usually less than 1 percent) that they do not invalidate the overall analysis. Furthermore, these negative energies tend to occur toward the end of the analysis, during the unloading phase, after the primary responses and damage of interest have been determined. The plastic hinge option should be used in lieu of KR tables in the coupled bending directions; negative strain energy will not occur with the plastic hinge option. It should also be noted that negative strain energy does not occur for linear beam elements, or for those that are nonlinear only in the uncoupled degrees of freedom (axial and torsion). The damping energy of the internal beams is usually small in relation to tiie strain energy, typically being less the- 20 percent of the strain energy, until late In the run when the strain energy has decreased substan¬ tially from its peak value. Note that damping energy always increases with time, since it is a dissipative energy that is not stored and released as with strain energy. Crushing and friction energies result from the deformation of the external springs and flexible ground for the former, and from sliding fric¬ tion along the ground for the latter. The friction energy is also dissipative 2-181 ami hence mount on i ca 11 y ini-rras i hk, whereas the crushing energy peaks ami decreases similar to the strain energy. fa general, a rather large percentage of the total svstem energy may he represented by Lite crushing, energv. Ihts situation is only natural since the external springs represent the structure in immediate contact wit'll the ground that undergoes substantial deformation. In a typical vehicle crash analysis, the system crushing energy may be larger than the internal beam strain energy. However, they both represent actual airplane structure, the only distinction being location on tile vehicle. The final energy information printed is a summary of the’ deviation of file total energy of each mass in the system from 100 percent. Ideally these variations should all be zero, but in actual practice errors associated with the numerical integration process result in deviations from the ideal. This information can be helpful for pinpointing areas of the mathematical model that may be causing numerical accuracy problems, and alerting the program user to the possible need for a finer integration time step. In typical applications, a few individual mass total energies may deviate 2 to 5 percent from the 100 percent ideal, while the total energy of the entire system remains within 0.5 percent or less. This accuracy is generally considered acceptable for the numerical integration process. However, the program user is free to adjust the integration time step to suit his men personal criterion For the accuracy of the individual mass i ntegra t ions. Internal Beam Stress Data. - The stress data output are shown in fig¬ ure 2-2'*, which is taken from the t = 0 output of the sample ease. (Stress data output was not selected for the sample case, so none was output at I l).b used for figure 2-23. At time zero, ail output is printed regardless el what the user requests). ibis output consists of ratios of current stress to failure Level stress (corresponding to initial yielding), for four locations on each beam, using two lailure theories. These theories are the maximum shear stress theory and the theory of constant energy of distortion. Section 1.3.17 of Volume 1 pre¬ sents tlu' method of calculating those ratios. Also shown in the output are the 2-182 ratios of current compressive/tensile stress to the corresponding yield stress and the ratio of current axial compressive load (when it is compressive) to the critical buckling load. The stress data can be used as a guide for estimating the time at which the element begins to yield. When such a state is reached, a stillness reduc¬ tion (actor (KR) may be developed for the affected member which then can be used to approximate the nonlinear response characteristics of that member. I he user is cautioned to exercise extreme care in the interpretation of data l>resi ntlal in the summary since they do not include the effect of stress con¬ cent ru t i ons, geometric shape factors, and detail attachment practices at joints. In addition, limitations of the program require that gross regions of the vehicle structure be modeled using relatively simple structural ele¬ ments. thus, the more gross the structural region the less accurate the stress values. Also monitoring the response of a structural element which may exhibit a buckling mode of failure will require special consideration. In this case the critical buckling load becomes significant and a stiffness reduction factor should be developed which will approximate the buckling character ist ii’s of the element. Furthermore, the user should realize that once an element has yielded or buckled, the failure theories followed become invalid and, consequently, the most meaningful use of the stress data is to identify which element may fail and at what point in time se h failures are apt to occur. J.3. i.2.7 initial Mass Acceleration Krror Output . - Figure 2-24 shows this output for the sample case. This information is only output at time zero, and has signiiicanco only if balanced initial conditions are used (KRASHIC and MSC IRAN arc used to calculate balanced internal beam loads). lor each mass in tho svstem, t he difference between the ..ctual time zero acceleration cal- .ulatid in KKASIIHI and the theoretically correct value, based on airplane ri.-iil hod\ aeve 1 oral ions at time zero, is printed. A summary at the bottom shows t !t> largest value and cor respond i i.g mass number for each of the six .ireeI oral ions. 2-183 RD-A161 8(1 KRASH 85 USER'S GUIDE - INPUT/OUTPUT FORHAT(U) 3/3 LOCKHEED-CALIFORNIA CO BURBANK N A GAHON ET AL. JUL 85 LR-38777 DOT/FBA/CT-85-18 DTFB83-83-C-888B4 UNCLASSIFIED F/G 1/3 microcopy resolution test chart NATIONAL BUREAU OF STANDARDS - 1963 - A DEVIATION* PERCENT'* • 6 T -T) T 1 -*1 >300000 >000030 > ui f o n *-* -f t>. t*. 4 T ' ^ O CO H CJ ^ o o o o o o vX O -H O -O O k/i m ro o m a n o ff c\j j X lO H rg O x a \ —i • v» «* a a >-« a _i ooooooooooooooooooooo ooooooooooooooooooooo ' M tg (g M ^ ifl i a o o o I C' N S O > O O rv > -l O' o -* i o a o o i ao c j f~- co Or-iOt'- I M r H i o o o a O 3 itg )<> 9 3 o in a r-t 2 000000000 '-» 000<-«"-*>-<00 2 ©OOOOOOOOOrMOOO*-"*-*^* - ' HNM^in^SOO'OHNMX^ FIGURE 2-24. KRASH85 INTERNAL BEAM STRESS DATA AND INITIAL MASS ACCELERATION ERROR OUTPUT (SHEET 1 OF 2) The reason that the time zero aece1erations are not "exactly" equal to the t heoret ical 1 v correct values is because the accuracy of’ the KRASH IC/MSCTRA! iterations is I imited bv the number of signil Scant I igures used in the input and output data sets used with XASTRAN. The accuracy shown in figure 2-24 is representative of a typical large transport airplane model, using ten itera¬ tions of KRASH1C/NASTRAN. In general the results are quite good, with most translational aece I era t ions accurate to within K-"> g's. Errors of this order should have no appreciable influence on the subsequent time history results, particu1ar1v for crash impacts which typicalIv involve mass accelera- t ions of t ive p's or more. DR I masses are excluded from the largest value summary because the DR I beam elements always start with zero internal load and deflection in the axial, direction. In subroutine NETFOR, where the theoretically exact initial acee1erations are computed, it is assumed that the DR1 mass is rigidly attached to the vehicle. 2.3. 1. '3 Summary Output At the conclusion of the time history printout several summaries are pre¬ sented, which include: • Summary of internal beam yielding and rupture • Summary of mass penetration into a control volume • Summary of external spring loading and unloading • Summary of plastic hinge moment formations • Summary ol energy distribution • lime histories of interaction Loads/summary of maximum load ratios • lime histories of vehicle c.g. motions I he summaries are illustrated in figure 2-25. Internal beam element yielding and rupture are summarized at the end of the run. For each occurrence of yielding or rupture, the time, beam identifi¬ cation and beam direction of yielding or rupture is output. Directions 1-6 2-186 correspond to beam axis directions x, y, z, I, 0 and 'i, the latter three being rotations about Liie beam x, y and z axes. In addition the beam tension and compression rupture is noted. if a beam has a special KR curve that starts at a nonzero value, then this summary will indicate yielding at time zero. This output provides the user with a concise summary of the onset of beam non- linearities and beam ruptures. Also included in the internal beam yielding summary are occurrences of interaction loads exceeding the user defined load envelopes. In figure 2-25, SUMMARY OF 1 ETERNAL BEAM YIELDING AND RUPTURE, the first item for beam 18 is a conventional beam vieiding in the 1, or axial direction. The second item, for beam 19, is a conventional beam rupture due to exceeding input maximum load levels, again in the axial direction. The third line, for beam 9, is an example of load interaction curve data showing up in this summary. The 15 under YIELD signifies that for load interaction curve number 15, an exceedance of the defined load envelope has occured. The 3 in the right hand column means that load line number 3, for interaction curve 15, was the specific interaction line that was exceeded. if the input load envelope is exceeded by the factor RITRAT (See Section 2.2, figure 2-3, card 2800), then the load interaction curve number will be printed under the heading RUPTURE. It should he noted that load interaction curve outputs in the YIELD column have caused nothing to happen in the time history solution; outputs in the RUPTURE column would have triggered an actual beam rupture during the time history solution. Any mass penetrations into the mass penetration control volume are also summarized. Both the mass penetrating the control volume and time of occurrence are noted. Since MVP = 0 in the sample case, this output is not illustrated in figure 2-25. Che summar\ of external spring loading and unloading provides the time of occurrence, the spring designations (mass, node, direction), type of event, initial del lection, maximum force and unloaded deflection and force. ihe summary of plastic hinge format ions identifies the time, beam number and mass number at the end where a plastie hinge formation takes place. In figure 2-25, beam 1 and mass 2 goes through cyclic plastic hinge motion. At 2-187 SUMMARY OF INTERNAL BEAM YIELDING AND RUPTURE BEAM BEAM DIRECTION FOR TENSION!♦1 OR TIME IJ I J M N YIELD RUPTURE COMPRESSION!- 2-188 ' * * C ‘ ’ O-/ */ v s' FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 1 OF 10) PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT MAXIMUM TOTAL OF OF OF OF OF OF ENERGY SYSTEM KINETIC CURRENT POTENTIAL CURRENT STRAIN CURRENT DAMPING CURRENT CRUSHING CURRENT FRICTION CURRENT TIME DEVIATION ENERGY ENERGY TOTAL ENERGY* TOTAL ENERGY TOTAL ENERGY TOTAL ENERGY TOTAL ENERGY TOTAL OOOOOOOOy N f j N O O x> uT ni j eg couaioi/ijcao n o OO'K^NHHHNMrA^ OOOOOOOOOOO 8 )MJff)NUlCaONM > lUlNOONHNNlH 1 eg CO »-* CJ 0 OOOOOOOOOOC O'OfslO N l/l a H cr S H *oe0fsirt)O'FYTKlM 01 N/o OOU>Nl>00'KHA-/>C0C III HI 111 111 III III III 111 1.1 111 111 UlDCOCD-JiJ'OMl/lOi-* NOM'JfJMHIO^NM i/i'ifflfji/iNi/iio-j^ij ^JU-iificOMOlMOtOCO eg i/) CO ■* to O' CO eg in M O >3- m LU L^J III 111 UJ III III III LI J O'MIOrtlONON® ' 0 \NNU 10 NNH O M O H (O Mfllfl NiHlONNNO'OO eg O' o CL O So o 5" M If k in O u. o < 38 O' m st> m O CO CO N- N 1/1 M N m in vj- eg UJ UJ UJ UJ <0 O' CO CJ >o ^ O' r*. O' 'O O' m O N H H ^ 3 m r» g> o eg CO ki O' co co ^ cO O O O CM H H N K1 o o o O O o o o o o o o o o o o o o H N o o o o o o o o FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 3 OF 10) UJ UJ UJ W U u UJ a o a a o r- co to O <0 O JNO'JO^rtOH ®ff''OHff'NN( 0 C 0 WN UlUJUiUitUUUJUIUJIUU OfflrlMff N |/1 a N tfNin^ajNMC'\o K» K 1 *H aNtOfOWO-hlff NNHOO-JHO'JJWI^ rtrtHIflWN^N L3 M ^ y yj yj yj yj yj yj yj y j yj ItlNJONONMUIUlhl CS> 00 K 1 a M CO N O N K 1 aoao o a o o < 38 JOOOOOOOOC X a: < r CO C'Jo-tO' *~J N S ff cnf'f-'lOCO'H O'fi'OMNOMOWCOKI lAU 1 >*C‘J.©Kt>OCH<\ilflfH f-t H> UiHlUiHJUiUiUJUiUJHJHJ Ha fiifl^NiflO csj^-h oiflH^n^ioinmN^ 0 'M« 0 «-*^WOM< 0 n^M MMONNM!M 3 U 1 (OH M M CM r i in h m m ^ i^ mo CJMCJCMHMfJKIO'CMO 0000000-60^^ OOOOOOOO 0-0 000000 0 0-00 0000000-0-00 00000000-00 00000000-00 — <-J O Hi .0 .0 f-» CO o OOOOOOOOOOO OOOOOOOOOOO ’-1 (>2 co a - O 5. o 0000000 - 0 - 0 - 0 - oooooo o-o-o-o- 0000000-0-0-0- OOOOOOO-O-O'O- 0000000-0-0-0- HCMNiom-fl- 6 N(Oo- OOOOOOOOOOO OOOOOOOOOOO wi. ,t, - . VW ... ~ 1~ » HHUA V *.* \« 1 FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 5 OF 10) LOAD INTERACTION CURVE NO. 8 , BEAM NO. LOCATION: rz~- AoO.OOD , BL= 0.0 , HL = OOOOOOOOOOO UJlUUUiUJUJUJUJUiUlUi C 4) O NMNOVIN.MMl.fir -O o«* oHNHajHowfl' in >j OOOOOOOOOOO I I I I I I I I I I I UJLUUJLliUJUJUIUIUjLJJUJ O'OMXO'Nito^m^rg CJUlHrjLOUlMN^O' O' Off'ff'NWO^HNOOO Of'COCSjOMOOO'-OCNjO' JUJLJUJLUUJLUUJ ■ ^ I O' K1 Ifl ^ O U1 I U1 N J O N O(0N(0-0W(0 OOOOOOC-CO^ O ooooooo o o O' OOOOOOO - O' O' O' ooooooo'o-c-a- ooooooo o- a o- oooo i o O' a o o w rj wT 1^ a ^ n o ^ ~:ooc ooooooo OOOOOOOOOOO IUILUUJUJU1UIUJUJUJ IN^lfllflJNCOON INHMHONM0 1 O H H M N S (NJ OJ N H . ooooooctcon.^ □ 000000000 OOOOOOOOO ' OOOOOOOOO C OOOOOOOOO O O O O O O O O' o o o H ^ to V* If) ^ .p N O C OOOOOOOOOOO OOOOOOOOOOO OOOOOOOO LULUUiOJUJUJUJUJ n hi >r h o n l^NNfUCO^JN IHHKINMKvON COff'JlflOJ'HN HHN^^^COS Lii in in Li I in |.i ill |n COO-nJMNvJO'H JJinNOHO-MN nnhj-j-h^h hi Hi lii in 111 III ui Ml Nieccj'Ti/tiO'i'M OrtOJHMHON M M i 4 ) O' O Q CO O O O O O O O' O O O O O O O' OOOOOOO' O O O C O O O' OOOOOOO' O O O O O O O' w m m ^ m i .o OOOOOOOO OOOOOOOO FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 6 OF 10) OOOOOOOOOOO n? in CO Ifl Ifl O- a s rt f\l M SNiHONM? fOCNjr^ in in id (>i hi hi lli m m lu in O' ^ T'OONa)H01C'U\ N O C' i in K (\l J M -J o ooo-^or-co^o-ofo oooi^^o^a--«v>cr rtHff COHNNI lu uj uj i*j uj uj u ui u uj uj M ul l O h o ( j ifl O W i/l coe o a ui a « j «■ w .j 0 Ol/l^fJOSiNMN WMiflinooooHoo INNNNNNMMM OOCOOO^CO^-C ooooouo-crao- OOCOOO^O'O-O' OOOOOOCO'C o' ©oooootf'C^ a O' OOOOOOOO'C c M ^ O l/l 0 .O <0 C OOOOOOOOOOO OOOOOOOOOOO o z *■ o O -J CO a. o Z OOOOOOOOOOO iii m ui m m ul u m m lu ui WHM/lNMUIOff ©si rt/)9-®l/|NNH .© O K> MH(\J(TN(0Ni-i®^K1 aCNNitKltflflO-KlUl bJUJUJUJIiiUJUIUJIliUJUJ CO -o h n ^ c- o i/) o !?• O'MCOfl'HNII/lOl/'S'N (rN j> s. ffl a- OOOOOOOOOOO OOOOOOOOOOO WHHHHHHHHHrlHHHO OOOOOOOOOOOOOOO I I I I I I I I I I t I I I ILIUILUUiUiUlUiUiiiiUiUiCUUJUJUJ vOO'ONCDO'NONNHOlOMO' Off'O'OO'SNOff'O'NOKIlflO' OOOOOOOOOOOOOOO FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 9 OF 10) TIME HISTORIES OF VEHICLE CG MOTIONS FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 10 OF 10) t ~ .0616, NEWPIN = 1 signifies that the coding has changed from fixed at the j end to pinned at the j end (j = 2). This is the technique for forming a plastic hinge. At t = .0643, NLWPIN = 0 signit ies that unloading has occurred, sc that a fixed end condition is appropriate. Subsequent changes in NEW I’ IN define transition points on a hysteresis curve. NKUTiN = 0 always means a transition to fixed coding has taken place, due to unloading from a plastic hinge moment. NKKTIN = 1 always means that a transition to pinned coding, has taken place, due to exceeding the input plastic hinge moment. DIREC'IIOX = 5 in figure .1-2 i refers to moments about the v beam axis (6 would be moment about the z beam axis). DIRECTION = -5 means that Lite sign of the plastic hinge moment at that time is negative. The energv summary showing the time variation of the different types of energy is presented. This summary facilitates visualizing the energy flow time variation; Lite one or two page summary is much easier to read than skimming through the basic time history print, which can run to hundreds of pages. Figure 2-25 shows an example of this output for the sample case. A quick glance at the "PERCENT TOTAL SYSTEM ENERGY" column tells the user how stable the solution is. The percent energy should stay within 99 - 101 per¬ cent , preferably within a +0.2 percent band. Any significant system insta¬ bilities will quickly manifest themselves in this output. The column entitled "PERCENT MAXIMUM ENERGY DEVIATION" shows the maximum deviation from 100 percent of the total energy for each mass individually, i.e., at each time the worst deviation of all the masses is shown. These numbers will always indicate a greater departure from 100 percent than the "PERCENT TOTAL SYSTEM ENERGY" column, wherein all the masses constituting the s'.-stem are included. The reason for this situation is that some of the masses have positive and some negative deviations from 100 percent, and when these are summed over the totaL system cancellations occur. Individual mass total energy deviations in the order of 10 percent may be tolerable, as long as the total system energy is acceptable. In the example shown in figure 2-25, the total system energy remains constant within .01 percent, while the maximum energy deviation is .02 percent at the conclusion of the analysis. The (+) in the heading for POTENTIAL ENERGY signifies that energy changes due to applied farce or a reeleration input time histories are included in the numbers sir vn ( ref or to Section 3 .3. '.2.')'). 1 in:e iiistories ot interaction loads follow the energy summary. in tlie sample case, there are 15 of these time histories, requiring about 5‘j pages of output. For each load interaction curve number, the following information is presented versus time: • X load value, pounds or inch-pounds • V load value, pounds or inch-pounds • Critical load line number. Of a LI the straight line segments making up the load envelope, the one which is most critical relative to the current X,Y combined loads is indicated. In general, the critical Load line number will change with time as the X and Y loads change. • Maximum load ratio. This is the ratio by which the current Load vector length (pt. 0,0 to point X,Y) exceeds a Line along this vector but terminating at the intersection of the vector and the critical load line (input). A ratio greater than 1.0 signifies an excursion outside the load envelope defined in the input data. Each time history data block also includes the identification of the load interaction curve number, beam number and location (FS, BL and WL). Also, the directions of the X and Y loads are defined. In the sample case, the X load is always 3 (vertical shear, Fz) and the Y load is always 5 (bending moment about 7 axis). At the end of each time history data block, the maximum and minimum values of X load and Y load are shown, as well as the peak value of MAX.LOAD RATIO. After the individual load interaction time histories, a summary of the peak values of ihe maximum load ratio is shown for all the input curves. This is followed bv the overall maximum load ratio and the corresponding inter¬ action curve number. For example, in figure 2-25, the overall maximum load r. i! io is 1.1999, which occurs for interaction curve number 15. This output 1 ives a very quick indication of the severity of the impact being analyzed, however, maximum load ratios greater than 1.0 do not necessarily imply that tii. corresponding structural section would have completely failed. Refer to Section 1.1 for a discussion of the theory and usage of the 1oad-interaction data. 2-199 If the interaction curves are used to obtain an overall section shear and moment (summation of all loads acting at a particular station) then the afore¬ mentioned printed summary is applicable to the sum of the forces acting and not an individual beam. The final summary print output is a time history of the overall vehicle c.g. motions. The quantities included are • c.g. translational accelerations, g's • c.g. translational velocities, in/sec • c.g. translational displacements, in (= 0 at time = 0) • Net forces acting at the c.g., pounds All these data are calculated in the same manner as the c.g. translational velo¬ cities, described in Section 1.3.9 of Volume 1. Weighted averages of all the mass motions are used to arrive at a value for the entire system. The final results completely define the translational motions of an uncoupled 1-mass, 3 degree-of-freedom system. Rotational loads and motions are not presented. These data have been used to determine vertical load-deflection character¬ istics for a large transport frame structure. Cross plots of DZI vs FZI from the KKASH analysis of a frame stri ■‘'"*'0 form a load-deflection curve that can he used to determine the external spring characteristics of a stick model of an entire airplane. 2.3. 3.A Time History Plots I he final section of output data consists of time history plots of selected response quantities. Figure 2-26 illustrates typical output data, fhe sequential time history print of the three responses is shown on the left, while Lhe plots are generated using three separate printer symbols. The scale I actor for all three plots is shown in the upper right corner of the page. The plot summary is printed on a separate output page as are the various sets * * ♦ tT* t' . ■ V" I" e_- *- t- n * II z #» N u. OOOOOOOOOOO UiUUJUlUIUJUiUlUJUJUJ ^rHO'in £ M PJMHNlfl'OHSHvJM 111 « OOOOOOOOOOO UJUJUJUlUiUJUJUiUJUiUJ cocgfou^sOco^co^O'!^- i-«©»-4r-«i/llA*-IO'3 , ©''0 • OOOOOOOOOO . r-icsjrns*'in'X>r^oo'0 • oooooooooo«-i • OOOOOOOOOOO 2-201 ■tetehailNMl FIGURE 2-26. KRASH85 SAMPLE OUTPUT TIME HISTORY PLOTS SECTION 3 ADDITIONAL KRASH85 DATA REQUIREMENTS This sections contains a description of those KRASH data requirements that are needed for KRASH85. These requirements are in addition to those items provided in Section 4 of reference 2. 3.1 LOAD-INTERACT ION CURVES KRASH85 has provisions to include load interaction curve data for failure prediction. Figure 3-1 shows a typical set of interaction curves for fuselage bending and shear at a particular airplane fuselage station. Figure 3-2 identifies the stringers at a representative frame location. The input requirements for load-interaction curves are as follows: • The user can specify interaction curves at a maximum of 40 locations, which can be anywhere. For each curve, either a Fuselage Station, Butt Line, or Water Line (only one) is input, as well as the corres¬ ponding beam number in a KRASH model. The location of the inter¬ action curve can be anywhere along a given beam; the user is not restricted to using the end points of the beam. For essentially fore-aft beams, only F.S. is input, while for lateral and vertical beams B.L. and W.L., respectively, are input to define the location of a load interaction curve. For each load interaction curve, the user inputs the following additional information: • The two load directions for the interaction curve. In figure 3-1, the abscissa represents vertical shear (direction 3) and the ordinate represents vertical bending moment (direction 5). Any 2 of the 6 loads can be specified. • A user-specified load sign convention. • Horizontal and vertical load interaction lines (4 total). Vj tbs * 10 ' FIGURE 3-1. MAXIMUM ALLOWABLE MOMENT AND SHEAR ENVELOPE - NEGATIVE BENDING FIGURE 3-2. TYPICAL CROSS SECTION WITH STIFFENER LOCATIONS - REAR VIEW ami v • I'p to 20 straight, sloping load interaction lines. i he x axis intercepts are input for each line. • A quantity called RL'PRAT (rupture ratio), which is explained below. Tiu 1 program is coded so that for the sloping interaction lines, data arc- input for any one quadrant (:< and y axis intercepts). In addition, "mirror flags" are input to tell the program whether or not to generate mirror image lines about the x and/or y axes. For example, in figure 3-2 the data arc- input for line 1 (x and y intercepts), and both the x and v axis mirror t lags are input as 1. The program then automatica11v generates lines 2, 1, and 4. If only a mirror about the y axis had been specified, then the program would generate only line 2. At each location the program calculates the following: • The internal beam loads, in KRASH sign convention, at the load interaction point. • These loads are transformed to correspond to the standard structural load sign convention employed by the I.ockheed-CaLifornia Company (Calac), shown in figure 3-4. • The Calac:-convent ion loads are then transformed to a user- specified sign convention. One of ten such sign conventions may be selected by the user. If no convention is specified, the loads are left in the Calac sign convention. • The two interaction loads are selected from the 6 loads calculated. • A load ratio for each load interaction line. A ratio greater than one indicates that a load interaction curve has been exceeded, signifying that at least one element has failed in some manner. KRASH is coded to allow complete rupture of a beam element if an input maximum load ratio (RVVRAT) is exceeded. 1. A left handed coordinate svstem is used; moments employ left hand rule. 2. Internal loads and moments are positive if the loads or moments applied by the part with the greater algebraic coordinate are positive in accordance with body axes conventions shown as x, y, Loads shown are those applied to the cutplane by the parts with the greater algebraic coordinate (station). At the conclusion of the computer run the following is printed: • Time histories of the following quantities for each load interaction curve. • X Load (fuselage vertical shear in figure 3-1). • V Load (fuselage vertical bending in figure 3-1). • Maximum load ratio at each time. • Input load interaction line number corresponding to the maximum load ratio at that time. • A summary which shows the peak maximum load ratio for each inter¬ action curve and the overall maximum load ratio. The user has the option of saving the load-interaction curve time history data in an output file, which can be used for subsequent post-processing. These data can be plotted to show the time-varying path of the calculated x-v loads, superimposed on the load-interaction curve (as illustrated by the dashed lines in figure 3-1). While the load interaction data output provides a great deal of useful information not previously available, considerable caution must be exercised hv the user in its interpretation. A maximum load ratio greater than one does not, by itself, indicate complete failure of the corresponding fuselage section. The output data have been used in conjunction with the actual manufacturer-furnished interaction diagrams to assess the extent of damage at each location. For example, suppose that the computed combined .loads were as shown by points A or B in figure 3-1. For point A stringers S27 through S30 could fail. For point B several additional stringer elements could fail (S-9 through S-15 and S-21 through S-30). Usually the input data to KRASH is the minimum necessary to define the inner boundary in figure 3-1. The current KRASH85 coding does not define which stringers fail; it only defines the critical load line at each time out. 3-5 j.2 A KM 1 IK ARY MASS Nl'MBKR INi. I'ro^ram KKASH has been modified to accept user supplied mass point i d> lit i ! i eat ion numbers. 1 he modi i'ii.aL ion can be thought of concept ua I I v as a tias.s point number pre-processor and a mass point number post-processor, ihe pre-processor converts external mass point numbers to internal mass point numbers. The external mass point numbers are supplied bv the user as «. cl o' » lie input while the internal mass point numbers are defined bv tile program. ] he internal mass numbers are consistent with the numberin'; svsleni previous!' used in earlier versions of program KKASH. After conversion pro- r iri KKAS11H3 is executed usiin; the internal mass point numbers. After oxecu- 1 ion is completed the post-processor converts the internal mass point numbers to external mass point rumbers for output. In the modification, two new .aibrout i lies (I NPT and INPTPL) wore added. In these subroutines, two arrays iMASS and I MASS) are defined which cross reference the external mass noint numbers to internal mass point numbers and vice versa. The external mass point identification numbers are input in column 71 and 72 c ■' Card 200 (MASS POINT DATA). The identification numbers can not be less than zero or greater than 99. Lf they are, program execution will be halted. lf any of the numbers are left blank or set equal to zero, the pro¬ claim will automatically assign sequential identification numbers to all mass points in the order of input. This option accommodates previously developed i up'il data set s . ..is h t he Ri:NM0l)=2 option is used, the program automatically assigns an ■ 1 1 mal mass point identification number to the image mass point generated cider this option. The identification number assigned is 100 greater than the ideiit i : icat ion number ot the mass point used in defining the image mass point, ir example, it the input mass point identification number is 96 then the image mass point ideiit i f icat ion number will he 196. SECTION 4 COMMON BLOCK REGIONS KRASH85 is designed such that data storage and transfer is accomplished using the many common block regions defined within the program. A cross reference of the common block names and using subroutines is given in Table 4-1. Included in the cross reference summary are size requirements defined by the FORTRAN H/EXTENDED (OPT = 3) compiler. SUBROUTINE TABLE 4-1. KRASH85 SUBROUT INK/COMMON REGION REFERENCE (CONTINUED) « « • « » » * * * • » »»•••»»»» * # # * * * «■ » * » * * * * • • * * * * • a » c*oa«a^o^ccccco«s^ o « 9 as o u r- •£ O' o ♦ n AU.rt«iBnir^u u m c u a. r* o* ♦ ® » - ^ «r c> r- ^ ec u. ^ ^ r** ^ O* (N Z Z I u b. u U & a h X «) HZ*W«*M*CN® OO I J J ft *t < U ft. H «0 *“» ^ U] HHUHMfltHfltHK H 10 * n |Jb.Kh:UikkUCiDZSItth) = cylinder load due to ambient air A A ii| = polytropic exponent E. = '•A,. A-l [CLEARANCE STROKE = shock strut closure displacement, varying with time F^ is given by (A.2) where p u . is the absolute air pressure in the upper chamber of the shock strut at full extension (y. = 0) and d . is the effective pneumatic diameter 1 oi as shown in Figure A.l. If 1 ’a s . is *-h e strut bottoming load at y^ = si, the value of Ep can be obtained from equation (A.l) as E. l (A.3) where is the stroke. For high velocity impact conditions, a polytropic exponent of 1,4, representing adiabatic conditions, is appropriate. In the EGLEO, FAO, program the values of E T , F A , F A , 1 °i A i FAA, YMAX and EXPOLE, respectively. and n^ are input as A. 3 HYDRAULIC DAMPING The hydraulic dampinc force F is given by O; F o . l (A. 4) shock strut closure velocity, varying with time where is a damping constant which is a ' v, I is tlie absolute value of v. and function of the strut orifice characteristics and of the characteristics 15,. of a strut rebound valve. C is defined as 1 i / i C z B. if v. 0 l l - C z . i B -t- B if v. " 0 i r. - i i (A. 3) K is tie fined bv i B. l 2B (A C,) 2 (A. 6) where A f C , = J d i / 8 V 2 2 77 /4 (d,. - d ) net orifice area f. p. l l orifice discharge coefficient (typical value = 0.85) 2 1b— sec oil density (typical value = 0.992 E-4-——) = 74 (v) . 4 in = effective hydraulic area d.-., d n . and d u . are the orifice, metering pin and effective hvd rau.lie. diam- 1 l f J l n l cters, respective (see Figure A.l). B. and B r . are input into the program as BOI.EO and BROLEO. A metering pin can he modeled hv inputting a table of BOI.EO versus Y0LE0. Y0I.E0 is the oloo compression, v, measured from the fully extended position. Another feature of KRASH is the ability to solve for the metering pin shape that yields a desired oleo load-deflection characteristic curve. If this option is employed, the metering pin input table (P0LE0 versus YOLEO) is interpretted as a table of total axial oleo load (!'| in equation A.LO) versus oleo compression. This option is termed the inverse metering pin option, and is employed by specifying a negative number for MPTAB on card 1400. The inverse metering pin coding is useful for two situations. • handing gear drop data are available, but the basic gear data (meter¬ ing pin shape) is not. KRASH can be used to calculate the variation of BOLEO versus Y0LE0 that will duplicate the observed test data, which is used as input data with the inverse metering pin coding. Once the BOLEO vs Y0LE0 data is calculated and output bv KRASH, it can be used as input data for subsequent runs to analyze different conditions involving that gear. • Metering pin design studies can be conducted using KRASH with the inverse metering pin option. In this situation, a metering pin characteristic can be determined that will yield a specified ideal oleo load-deflection curve. When the inverse metering pin option is employed, the KRASH output data includes a table of Y0LE0 vs. BOLEO for each oleo specified. The data point spacing for the table is determined by the output point times specified by DP/DT on card 110. The data will be output in uniform time steps, which means that the YOLEO increments will not be uniform. A.4 FRICTION FORCE Coulomb friction is modeled, so that the magnitude of the friction force is independent of velocity, while the direction of the force is opposite to the direction of the strut velocity. The friction forces, Fp^, are given by F r = C f(y.) (A.7) F. l i l where f(v;) is a function whose sign is always equal to that of and whose magnitude is 1. Strictly speaking, f(y^) should be equal to 1.0 for all positive values • • of y. and equal to -1.0 for all negative values of y^. However, since the A-5 friction force is a passive force and is only present as a reaction to an applied force, the friction force will be able to attain its lull value on 1v if the applied force is greater than C-. If this situation is not the case, stops will occur in the motion. A rigorous treatment of this problem would introduce unwarranted complications into the program. A very good approximate solution which avoids the difficulty can be obtained by letting the friction force varv sufficiently slowly from to { at small values of v j, so Licit at each step in the integration process equilibrium of the forces is obtained without introducing large discontinuities. The following form is therefor*.' assumed for f ( v .) : f(V.) = tanh (v./a ) (A.8) - 1 • 1 o This function is plotted in Figure A-2 for various values of , The value, of a should be small enough to simulate the friction force with o sufficient accuracy, but not so small as to introduce discontinuities. The minimum value will depend on the integration interval. Generally a value of . = 1 is found to be suitable. The expression for the friction force t 1 becomes F_ = C. tanh (v./ci ) (A.9) r . l • l o l The values of nt and Ch are input as ALPHAP and FCOUL in the program. A.5 ELASTIC STOPS Two elastic stops of stiffness K F and K,. are present which limit the ^ i e l travel of the piston at full extension and full compression, respectively. 1 he forces generated by these stops are, therefore, equal to Kp Yj when v. 0 and K,. (v. - S.) when y. • S.. l 1 i ' i t l t FIGURE A-2. FRICTION FORCE COEFFICIENT AS FUNCTION OF STRUT CLOSURE VELOC Collecting all the above terms the total axial force F. can be written as F = F + F + F + F + F i A. o. F. EXT. COMP. ill i 1 (A.10) The terms K r , K , and S. are input into the program as XKEXT, XKCOMP, and i i 1 VM\X, respectively. U.S. GOVERNMENT PRINTING OFFICE: I 9 8 5-505 08 0/2 0 1 3 5 END FILMED 1-86 DTIC